|   | 
Details
   web
Records
Author Zhang, S.; Tao, F.; Zhang, Z.
Title Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 189 Issue Pages 43-50
Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2
Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4731
Permanent link to this record
 

 
Author Bai, H.; Tao, F.
Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 211 Issue Pages 89-105
Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize
Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.
Address 2017-08-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5174
Permanent link to this record
 

 
Author Lorite, I.J.; Gabaldon-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; de la Rosa, R.; Leon, L.; Santos, C.
Title Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions Type Journal Article
Year 2018 Publication Agricultural Water Management Abbreviated Journal Agric. Water Manage.
Volume 204 Issue Pages 247-261
Keywords Irrigation requirements; Yield; Irrigation water productivity; Olive; Climate change; Olea-Europaea L.; Different Irrigation Regimes; Water Deficits; Iberian; Peninsula; CO2 Concentration; Potential Growth; Atmospheric CO2; Southern Spain; Change Impacts; River-Basin
Abstract AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.
Address 2018-06-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0378-3774 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5204
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record
 

 
Author Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K.
Title Improving the use of crop models for risk assessment and climate change adaptation Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 296-306
Keywords Crop model; Risk assessment; Climate change impacts; Adaptation; Climate models; Uncertainty
Abstract Highlights

• 14 criteria for use of crop models in assessments of impacts, adaptation and risk • Working with stakeholders to identify timing of risks is key to risk assessments. • Multiple methods needed to critically assess the use of climate model output • Increasing transparency and inter-comparability needed in risk assessments

Abstract

Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5175
Permanent link to this record