|   | 
Details
   web
Records
Author Kim, Y.; Berger, S.; Kettering, J.; Tenhunen, J.; Haas, E.; Kiese, R.
Title Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC Type Journal Article
Year 2014 Publication Ecological Research Abbreviated Journal Ecol. Res.
Volume 29 Issue 3 Pages 441-454
Keywords biogeochemical modeling; landscapedndc; N2O; nitrate leaching; plastic mulch; nitrous-oxide emissions; semiarid loess plateau; biogeochemical model; soil-erosion; no emissions; forest soils; dndc model; film mulch; china; field
Abstract Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0912-3814 1440-1703 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4528
Permanent link to this record
 

 
Author Kros, J.; Bakker, M.M.; Reidsma, P.; Kanellopoulos, A.; Jamal Alam, S.; de Vries, W.
Title Impacts of agricultural changes in response to climate and socioeconomic change on nitrogen deposition in nature reserves Type Journal Article
Year 2015 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.
Volume 30 Issue 5 Pages 871-885
Keywords Agricultural adaptation; Climate change; Land use change; Environmental; impact; Farming system; Nitrogen losses; netherlands; diversity; scenario
Abstract This paper describes the environmental consequences of agricultural adaptation on eutrophication of the nearby ecological network for a study area in the Netherlands. More specifically, we explored (i) likely responses of farmers to changes in climate, technology, policy, and markets; (ii) subsequent changes in nitrogen (N) emissions in responses to farmer adaptations; and (iii) to what extent the emitted N was deposited in nearby nature reserves, in view of the potential impacts on plant species diversity and desired nature targets. For this purpose, a spatially-explicit study at landscape level was performed by integrating the environmental model INITIATOR, the farm model FSSIM, and the land-use model RULEX. We evaluated two alternative scenarios of change in climate, technology, policy, and markets for 2050: one in line with a ‘global economy’ (GE) storyline and the other in line with a ‘regional communities’ (RC) storyline. Results show that the GE storyline resulted in a relatively strong increase in agricultural production compared to the RC storyline. Despite the projected conversions of agricultural land to nature (as part of the implementation of the National Ecological Network), we project an increase in N losses and N deposition due to N emissions in the study area of about 20 %. Even in the RC storyline, with a relatively modest increase in agricultural production and a larger expansion of the nature reserve, the N losses and deposition remain at the current level, whereas a reduction is required. We conclude that more ambitious green policies are needed in view of nature protection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-2973 1572-9761 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4565
Permanent link to this record
 

 
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A.
Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 122 Issue Pages 12-24
Keywords
Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-8009 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5002
Permanent link to this record
 

 
Author Waha, K.; Müller, C.; Rolinski, S.
Title Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century Type Journal Article
Year 2013 Publication Global and Planetary Change Abbreviated Journal Global and Planetary Change
Volume 106 Issue Pages 1-12
Keywords climate change; wet season; water stress; temperature stress; hierarchical cluster analysis; global vegetation model; climate-change; southern africa; east-africa; part i; food; heat; agriculture; variability; impacts
Abstract Maize (Zea mays L) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (similar to 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question. We create synthetic climate data in order to study the effect of large changes in the length of the wet season and the amount of precipitation during the wet season both separately and in combination with changes in temperature. The dynamic global vegetation model for managed land LPJmL is used to simulate maize yields under current and future climatic conditions for the two 10-year periods 2056-2065 and 2081-2090 for three climate scenarios for the A1b emission scenario but without considering the beneficial CO2 fertilization effect. The importance of temperature and precipitation effects on maize yields varies spatially and we identify four groups of crop yield changes: regions with strong negative effects resulting from climate change (<-33% yield change), regions with moderate (-33% to -10% yield change) or slight negative effects (-10% to +6% yield change), and regions with positive effects arising from climate change mainly in currently temperature-limited high altitudes (>+6% yield change). In the first three groups temperature increases lead to maize yield reductions of 3 to 20%, with the exception of mountainous and thus cooler regions in South and East Africa. A reduction of the wet season precipitation causes decreases in maize yield of at least 30% and prevails over the effect of increased temperatures in southern parts of Mozambique and Zambia, the Sahel and parts of eastern Africa in the two projection periods. This knowledge about the limiting abiotic stress factor in each region will help to prioritize future research needs in modeling of agricultural systems as well as in drought and heat stress breeding programs and to identify adaption options in agricultural development projects. On the other hand the study enhances the understanding of temperature and water stress effects on crop yields in a global vegetation model in order to identify future research and model development needs. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-8181 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4508
Permanent link to this record
 

 
Author Weindl, I.; Popp, A.; Bodirsky, B.L.; Rolinski, S.; Lotze-Campen, H.; Biewald, A.; Humpenoeder, F.; Dietrich, J.P.; Stevanovic, M.
Title Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics Type Journal Article
Year 2017 Publication Global and Planetary Change Abbreviated Journal Global And Planetary Change
Volume 159 Issue Pages 1-10
Keywords Livestock productivity; Diets; Land use; Deforestation; Carbon emissions; Greenhouse gas mitigation; Greenhouse-Gas Emissions; Climate-Change Mitigation; Food-Demand; Crop; Productivity; Cover Change; Systems; Agriculture; Intensification; Environment; Deforestation
Abstract Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-8181 ISBN Medium
Area Expedition Conference
Notes LiveM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5188
Permanent link to this record