toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ventrella, D.; Charfeddine, M.; Giglio, L.; Castellini, M. url  doi
openurl 
  Title Application of DSSAT models for an agronomic adaptation strategy under climate change in Southern of Italy: optimum sowing and transplanting time for winter durum wheat and tomato Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 16  
  Keywords DSSAT model; climate change; winter durum wheat; tomato; sowing time; transplanting time  
  Abstract Many climate change studies have been carried out in different parts of the world to assess climate change vulnerability and adaptation capacity of agricultural crops for certain environments characterized from climatic, pedological and agronomical point of view. The objective of this study was to analyse the productive response of winter durum wheat and tomato to climate change and sowing/transplanting time in one of the most productive areas of Italy (i.e. Capitanata, Puglia), using CERES-Wheat and CROPGRO cropping system models. Three climatic datasets were used: i) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975- 2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2°C (centred over 2030-2060) and +5°C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). No negative yield effects of climate change were observed for winter durum wheat with delayed sowing (from 330 to 345 DOY) increasing the average dry matter grain yield under forecasted scenarios. Instead, the warmer temperatures were primarily shown to accelerate the phenology, resulting in decreased yield for tomato under the + 5°C future climate scenario. In general, under global temperature increase by 5°C, early transplanting times could minimize the negative impact of climate change on crop productivity but the intensity of this effect was not sufficient to restore the current production levels of tomato cultivated in southern Italy.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4821  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. url  doi
openurl 
  Title Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: yield analysis and soil fertility Type Journal Article
  Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.  
  Volume 7 Issue 1 Pages 15  
  Keywords DSSAT model; CENTURY-module; climate change; winter durum wheat; tomato, crop rotation  
  Abstract Cropping systems are affected by climate change because of the strong relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. The increasing temperatures and the reduction of available water resources may result in negative impacts on the agricultural activity in Mediterranean environments than other areas. In this study the CERES-Wheat and CROPGRO-Tomato models were used to assess the effects of climate change on winter wheat (Triticum durum L.) and processing tomato (Lycopersicon aesculentum Mill.) in one of most productive areas of Italy, located in the northern part of the Puglia region. In particular we have compared three different General Circulation Models (HadCM3, CCSM3, ECHAM5) subjected to a statistical downscaling under two future IPCC scenarios (B1 and A2). The analysis was carried out at regional scale repeating the simulations for seven homogeneous area characterizing the spatial variability of the region. In the second part of the study, considering only HadCM3 data set, climate change impact on long-term sequences of the two crops combined in three crop rotations were evaluated in terms of yield performances and soil fertility as indicated by the soil organic content of carbon and nitrogen. The comparison between GCMs showed no significant differences for winter durum wheat yield, while noticeable differences were found for yield and irrigation requirements of tomato. Under future scenarios, the production levels were reduced for tomato, whereas positive yield effects were observed for winter durum wheat. For winter durum wheat the simulation indicated that two- and three-year rotations, including one year of tomato cultivation, improved the cereal yield and this positive effect maintained its validity also in future scenarios. For both crops higher requirements of water and nitrogen were predicted under future scenarios. This result coupled with the decrease of yield caused negative reduction of water use efficiency and nitrogen use efficiency for tomato cultivation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2039-6805 1125-4718 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4481  
Permanent link to this record
 

 
Author Scholten, M.C.T. url  doi
openurl 
  Title Research and innovation for a competitive and sustainable animal production sector in a climate changing Europe: linking up MACSUR with Animal Task Force Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 1-2  
  Keywords animal health; livestock; climate smart production; integration  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4717  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D. doi  openurl
  Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 9 Issue Pages 4249  
  Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2  
  Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.  
  Address 2018-10-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5211  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P. doi  openurl
  Title Designing high-yielding wheat ideotypes for a changing climate Type Journal Article
  Year 2013 Publication Food and Energy Security Abbreviated Journal Food Energy Secur.  
  Volume 2 Issue 3 Pages 185-196  
  Keywords Climate change impacts; crop modeling; LARS-WG; Sirius; wheat  
  Abstract Global warming is characterized by shifts in weather patterns and increases in climatic variability and extreme events. New wheat cultivars will be required for a rapidly changing environment, putting severe pressure on breeders who must select for climate conditions which can only be predicted with a great degree of uncertainty. To assist breeders to identify key wheat traits for improvements under climate change, wheat ideotypes can be designed and tested in silico using a wheat simulation model for a wide range of future climate scenarios predicted by global climate models. A wheat ideotype is represented by a set of cultivar parameters in a model, which could be optimized for best wheat performance under projected climate change. As an example, high-yielding wheat ideotypes were designed at two contrasting European sites for the 2050 (A1B) climate scenario. Simulations showed that wheat yield potential can be substantially increased for new ideotypes compared with current wheat varieties under climate change. The main factors contributing to yield increase were improvement in light conversion efficiency, extended duration of grain filling resulting in a higher harvest index, and optimal phenology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2048-3694 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4505  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: