toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F. url  doi
openurl 
  Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 43 Issue Pages 108-118  
  Keywords durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water  
  Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4596  
Permanent link to this record
 

 
Author Angulo, C.; Rötter, R.; Trnka, M.; Pirttioja, N.; Gaiser, T.; Hlavinka, P.; Ewert, F. url  doi
openurl 
  Title Characteristic ‘fingerprints’ of crop model responses to weather input data at different spatial resolutions Type Journal Article
  Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 49 Issue Pages 104-114  
  Keywords crop model; weather data resolution; aggregation; yield distribution; climate-change scenarios; areal unit problem; simulation-model; winter-wheat; system model; impacts; europe; yield; productivity; precipitation  
  Abstract Crop growth simulation models are increasingly used for regionally assessing the effects of climate change and variability on crop yields. These models require spatially and temporally detailed, location-specific, environmental (weather and soil) and management data as inputs, which are often difficult to obtain consistently for larger regions. Aggregating the resolution of input data for crop model applications may increase the uncertainty of simulations to an extent that is not well understood. The present study aims to systematically analyse the effect of changes in the spatial resolution of weather input data on yields simulated by four crop models (LINTUL-SLIM, DSSAT-CSM, EPIC and WOFOST) which were utilized to test possible interactions between weather input data resolution and specific modelling approaches representing different degrees of complexity. The models were applied to simulate grain yield of spring barley in Finland for 12 years between 1994 and 2005 considering five spatial resolutions of daily weather data: weather station (point) and grid-based interpolated data at resolutions of 10 km x 10 km; 20 km x 20 km; 50 km x 50 km and 100 km x 100 km. Our results show that the differences between models were larger than the effect of the chosen spatial resolution of weather data for the considered years and region. When displaying model results graphically, each model exhibits a characteristic ‘fingerprint’ of simulated yield frequency distributions. These characteristic distributions in response to the inter-annual weather variability were independent of the spatial resolution of weather input data. Using one model (LINTUL-SLIM), we analysed how the aggregation strategy, i.e. aggregating model input versus model output data, influences the simulated yield frequency distribution. Results show that aggregating weather data has a smaller effect on the yield distribution than aggregating simulated yields which causes a deformation of the model fingerprint. We conclude that changes in the spatial resolution of weather input data introduce less uncertainty to the simulations than the use of different crop models but that more evaluation is required for other regions with a higher spatial heterogeneity in weather conditions, and for other input data related to soil and crop management to substantiate our findings. Our results provide further evidence to support other studies stressing the importance of using not just one, but different crop models in climate assessment studies. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4598  
Permanent link to this record
 

 
Author Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; Vuuren, D.P. van url  doi
openurl 
  Title Land-use futures in the shared socio-economic pathways Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 331-345  
  Keywords Scenarios; Land use; Emissions; Mitigation; Food prices; Integrated assessment; SSP  
  Abstract • Narratives for the Shared Socio-Economic Pathways (SSPs) focusing on the land sector are presented. • Integrated Assessment Models have been applied for the SSPs to assess potential future developments for land use, greenhouse gas emissions, food provision and prices. • Model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures. • SSP-based land use pathways aim at supporting future climate research, climate impact analysis, biodiversity research and sustainability science. Abstract In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5006  
Permanent link to this record
 

 
Author Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; Lutz, W.; Popp, A.; Cuaresma, J.C.; KC, S.; Leimbach, M.; Jiang, L.; Kram, T.; Rao, S.; Emmerling, J.; Ebi, K.; Hasegawa, T.; Havlik, P.; Humpenöder, F.; Da Silva, L.A.; Smith, S.; Stehfest, E.; Bosetti, V.; Eom, J.; Gernaat, D.; Masui, T.; Rogelj, J.; Strefler, J.; Drouet, L.; Krey, V.; Luderer, G.; Harmsen, M.; Takahashi, K.; Baumstark, L.; Doelman, J.C.; Kainuma, M.; Klimont, Z.; Marangoni, G.; Lotze-Campen, H.; Obersteiner, M.; Tabeau, A.; Tavoni, M. url  doi
openurl 
  Title The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 153-168  
  Keywords Shared Socioeconomic Pathways; SSP; Climate change; RCP; Community scenarios; Mitigation; Adaptation  
  Abstract Abstract This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  
  Address 2017-06-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5008  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P. doi  openurl
  Title Adapting wheat ideotypes for climate change: accounting for uncertainties in CMIP5 climate projections Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 123-139  
  Keywords sirius wheat model; lars-wg weather generator; downscaling; cmip5 ensemble; impact assessment; stochastic weather generators; earth system model; diverse canadian climates; high-temperature stress; change scenarios; lars-wg; decadal prediction; yield progress; heat-stress; aafc-wg  
  Abstract This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for the downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 Representative Concentration Pathways (RCPs), RCP4.5 and RCP8.5, were integrated with LARS-WG. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM x RCP, a climate sensitivity index could be used to select a subset of GCMs which preserves the range of uncertainty found in CMIP5. This would allow us to quantify uncertainty in predictions of impacts resulting fromthe CMIP5 ensemble by conducting fewer simulation experiments. In a case study, we describe the use of the Sirius wheat simulation model to design in silico wheat ideotypes that are optimised for future climates in Europe, sampling uncertainty in GCMs, emission scenarios, time periods and European locations with contrasting climates. Two contrasting GCMs were selected for the analysis, ‘hot’ HadGEM2-ES and ‘cool’ GISS-E2-R-CC. Despite large uncertainty in future climate projections, we were able to identify target traits for wheat improvement which may assist breeding for high-yielding wheat cultivars with increased yield stability.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4701  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: