|   | 
Details
   web
Records
Author Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.; Sanz-Cobena, A.; Lassaletta, L.; Gamier, J.; Smith, P.
Title Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems Type Journal Article
Year 2017 Publication Agriculture, Ecosystems & Environment Abbreviated Journal Agriculture, Ecosystems & Environment
Volume 238 Issue Pages 1-4
Keywords Climate-Change; Soil Carbon
Abstract
Address 2017-03-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0167-8809 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4940
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Destain, M.-F.
Title Modeling and prediction of nonlinear environmental system using Bayesian methods Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 92 Issue Pages 16-31
Keywords state and parameter estimation; variational filter; particle filter; extended kalman filter; nonlinear environmental system; leaf area index and soil moisture model; extended kalman filter; state-space models; parameter-estimation; particle filters; navigation; tutorial; tracking
Abstract An environmental dynamic system is usually modeled as a nonlinear system described by a set of nonlinear ODEs. A central challenge in computational modeling of environmental systems is the determination of the model parameters. In these cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. This work addresses the problem of monitoring and modeling a leaf area index and soil moisture model (LSM) using state estimation. The performances of various conventional and state-of-the-art state estimation techniques are compared when they are utilized to achieve this objective. These techniques include the extended Kalman filter (EKF), particle filter (PF), and the more recently developed technique variational filter (VF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the leaf-area index LAI, the volumetric water content of the soil layer 1, HUR1 and the volumetric water content of the soil layer 2, HUR2) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of number of estimated model parameters on the accuracy and convergence of these techniques are also assessed. The results of both comparative studies show that the PF provides a higher accuracy than the EKF, which is due to the limited ability of the EKF to handle highly nonlinear processes. The results also show that the VF provides a significant improvement over the PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VF yields an optimum choice of the sampling distribution, which also accounts for the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. However, the VF can still provide both convergence as well as accuracy related advantages over other estimation methods. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4495
Permanent link to this record
 

 
Author Wolf, J.; Ouattara, K.; Supit, I.
Title Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 214-215 Issue Pages 208-218
Keywords crop modelling; maize; sorghum; sowing; WOFOST; yield potential; semiarid west-africa; pearl-millet cultivation; soil organic-matter; climate-change; planting dates; crop model; variability; water; adaptation; tillage
Abstract To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to north. We tested in total 22 methods to derive optimal sowing dates that result in highest water-limited yields and lowest yield variation in a reproducible and objective way. The WOFOST crop growth simulation model was used. We found that sowing dates that are based on local expert knowledge, may work quite well for Burkina Faso and for West Africa in general. However, when no a priori information is available, maize should be sown between Julian days 160 and 200, with application of the following criteria: (a) cumulative rainfall in the sowing window is >= 3 cm or available soil moisture content is >2 cm in the moderately dry central part of Burkina Faso, (b) cumulative rainfall in this period is >= 2 cm or available soil moisture content is >1 cm in the more humid regions in the southern part of Burkina Faso. Sorghum should also be sown between Julian days 160 and 200 with application of the following criteria: (a) in the dry northern part of Burkina Faso the long duration sorghum variety should be sown when cumulative rainfall is >2 cm in the sowing window, and the short duration sorghum variety should be sown later when cumulative rainfall is >= 3 cm, (b) in central Burkina Faso sowing should start when cumulative rainfall in this period is >= 2 cm or when available soil moisture content is >1 cm. Sowing date rules are shown to be generally crop and location specific and are not generic for West Africa. However, the required precision of the sowing rules appears to rapidly decrease with increasing duration and intensity of the rainy season. Sowing delay as a result of, for example, labour constraints, has a disastrous effect on rainfed maize and sorghum yields, particularly in the northern part of West Africa with low rainfall. Optimization of sowing dates can also be done by simulating crop yields in a time window of two months around a predefined sowing date. Using these optimized dates appears to result in a good estimate of the maximal mean rainfed yield level. (C) 2015 Elsevier B.V. All rights reserved.
Address 2015-10-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4702
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F.
Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 220 Issue Pages 101-115
Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil
Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4673
Permanent link to this record
 

 
Author Müller, C.; Robertson, R.D.
Title Projecting future crop productivity for global economic modeling Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 37-50
Keywords climate change; crop modeling; agricultural productivity; land use; greenhouse-gas emissions; soil organic-carbon; sub-saharan africa; climate-change; elevated co2; land-use; system model; wheat yields; maize yields; agriculture
Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4533
Permanent link to this record