|   | 
Details
   web
Records
Author Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; Valin, H.; Willenbockel, D.; Wise, M.
Title Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 103-116
Keywords energy demand; agricultural markets; general equilibrium modeling; partial equilibrium modeling; model comparison; greenhouse-gas emissions; land-use; energy; productivity; scenarios; policies; capture; storage; system
Abstract Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4532
Permanent link to this record
 

 
Author Müller, C.; Robertson, R.D.
Title Projecting future crop productivity for global economic modeling Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 37-50
Keywords climate change; crop modeling; agricultural productivity; land use; greenhouse-gas emissions; soil organic-carbon; sub-saharan africa; climate-change; elevated co2; land-use; system model; wheat yields; maize yields; agriculture
Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4533
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Vosough Ahmadi, B.; Stott, A.W.
Title Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway Type Journal Article
Year 2018 Publication Preventive Veterinary Medicine Abbreviated Journal Preventive Veterinary Medicine
Volume 150 Issue Pages 19-29
Keywords Dairy cow; Dynamic programming; Greenhouse gas emissions intensity; Profitability; Subclinical mastitis; Whole farm modelling
Abstract Impaired animal health causes both productivity and profitability losses on dairy farms, resulting in inefficient use of inputs and increase in greenhouse gas (GHG) emissions produced per unit of product (i.e. emissions intensity). Here, we used subclinical mastitis as an exemplar to benchmark alternative scenarios against an economic optimum and adjusted herd structure to estimate the GHG emissions intensity associated with varying levels of disease. Five levels of somatic cell count (SCC) classes were considered namely 50,000 (i.e. SCC50), 200,000, 400,000, 600,000 and 800,000 cells/mL (milliliter) of milk. The effects of varying levels of SCC on milk yield reduction and consequential milk price penalties were used in a dynamic programming (DP) model that maximizes the profit per cow, represented as expected net present value, by choosing optimal animal replacement rates. The GHG emissions intensities associated with different levels of SCC were then computed using a farm-scale model (HolosNor). The total culling rates of both primiparous (PP) and multiparous (MP) cows for the five levels of SCC scenarios estimated by the model varied from a minimum of 30.9% to a maximum of 43.7%. The expected profit was the highest for cows with SCC200 due to declining margin over feed, which influenced the DP model to cull and replace more animals and generate higher profit under this scenario compared to SCC50. The GHG emission intensities for the PP and MP cows with SCC50 were 1.01 kg (kilogram) and 0.95 kg carbon dioxide equivalents (CO2e) per kg fat and protein corrected milk (FPCM), respectively, with the lowest emissions being achieved in SCC50. Our results show that there is a potential to reduce the farm GHG emissions intensity by 3.7% if the milk production was improved through reducing the level of SCC to 50,000 cells/mL in relation to SCC level 800,000 cells/mL. It was concluded that preventing and/or controlling subclinical mastitis consequently reduces the GHG emissions per unit of product on farm that results in improved profits for the farmers through reductions in milk losses, optimum culling rate and reduced feed and other variable costs. We suggest that further studies exploring the impact of a combination of diseases on emissions intensity are warranted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0167-5877 ISBN Medium
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5181
Permanent link to this record
 

 
Author Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O.
Title The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 123 Issue 3-4 Pages 705-718
Keywords land-use change; bio-energy; greenhouse gases; carbon-dioxide; climate-change; constraints; emissions; economics; storage; costs
Abstract This study investigates the use of bioenergy for achieving stringent climate stabilization targets and it analyzes the economic drivers behind the choice of bioenergy technologies. We apply the integrated assessment framework REMIND-MAgPIE to show that bioenergy, particularly if combined with carbon capture and storage (CCS) is a crucial mitigation option with high deployment levels and high technology value. If CCS is available, bioenergy is exclusively used with CCS. We find that the ability of bioenergy to provide negative emissions gives rise to a strong nexus between biomass prices and carbon prices. Ambitious climate policy could result in bioenergy prices of 70 $/GJ (or even 430 $/GJ if bioenergy potential is limited to 100 EJ/year), which indicates a strong demand for bioenergy. For low stabilization scenarios with BECCS availability, we find that the carbon value of biomass tends to exceed its pure energy value. Therefore, the driving factor behind investments into bioenergy conversion capacities for electricity and hydrogen production are the revenues generated from negative emissions, rather than from energy production. However, in REMIND modern bioenergy is predominantly used to produce low-carbon fuels, since the transport sector has significantly fewer low-carbon alternatives to biofuels than the power sector. Since negative emissions increase the amount of permissible emissions from fossil fuels, given a climate target, bioenergy acts as a complement to fossils rather than a substitute. This makes the short-term and long-term deployment of fossil fuels dependent on the long-term availability of BECCS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0165-0009 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4529
Permanent link to this record
 

 
Author Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A.
Title Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Type Journal Article
Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 466-467 Issue Pages 164-174
Keywords Agriculture/*methods; Air Pollutants/*metabolism; Brassica napus/growth & development/metabolism; Crops, Agricultural/growth & development/*metabolism; Gases/metabolism; Greenhouse Effect; Hordeum/growth & development/metabolism; Manure/*analysis; Nitrogen/metabolism; Nitrogen Dioxide/metabolism; Spain; Vicia/growth & development/metabolism; Zea mays/growth & development; Cover crops; GHG emissions; Green manure; Irrigation; Maize
Abstract This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N(2)O, CO(2) and CH(4) in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N(2)O and CO(2) losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N(2)O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N(2)O compared with -Ba and -Rp. The direct emissions of N(2)O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO(3)(-) pool due to highly denitrifying conditions and increased drainage. The fluxes of CO(2) were in the range of other fertilized crops (i.e., 1118.71-1736.52 kg CO(2)-Cha(-1)). The incorporation of CC residues enhanced soil respiration in the range of 21-28% for barley and rape although no significant differences between treatments were detected. Negative CH(4) fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of -0.12 and -0.10 kg CH(4)-Cha(-1) for plots with and without incorporated CCs, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4639
Permanent link to this record