|   | 
Details
   web
Records
Author Mittenzwei, K.; Persson, T.; Höglind, M.; Kværnø, S.
Title Combined effects of climate change and policy uncertainty on the agricultural sector in Norway Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 153 Issue Pages 118-126
Keywords Climate change; Norway; Agriculture; Policy uncertainty; Modelling; LINGRA; CSM-CERES-Wheat; DSSAT
Abstract Highlights • A framework to study climate and policy uncertainty in agriculture is presented. • Combining both sources of uncertainty has ambiguous effects on agriculture. • Uncertainty needs to be highlighted in modelling tools for policy analysis. Abstract Farmers are exposed to climate change and uncertainty about how that change will develop. As farm incomes, in Norway and elsewhere, greatly depend on government subsidies, the risk of a policy change constitutes an additional uncertainty source. Hence, climate and policy uncertainty could substantially impact agricultural production and farm income. However, these sources of uncertainty have, so far, rarely been combined in food production analyses. The aim of this study was to determine the effects of a combination of policy and climate uncertainty on agricultural production, land use, and social welfare in Norway. Output yield distributions of spring wheat and timothy, a major forage grass, from simulations with the weather-driven crop models, CSM-CERES-Wheat and, LINGRA, were processed in the a stochastic version Jordmod, a price-endogenous spatial economic sector model of the Norwegian agriculture. To account for potential effects of climate uncertainty within a given future greenhouse gas emission scenario on farm profitability, effects on conditions that represented the projected climate for 2050 under the emission scenario A1B from the 4th assessment report of the Intergovernmental Panel on Climate Change and four Global Climate Models (GCM) was investigated. The uncertainty about the level of payment rates at the time farmers make their management decisions was handled by varying the distribution of payment rates applied in the Jordmod model. These changes were based on the change in the overall level of agricultural support in the past. Three uncertainty scenarios were developed and tested: one with climate change uncertainty, another with payment rate uncertainty, and a third where both types of uncertainty were combined. The three scenarios were compared with results from a deterministic scenario where crop yields and payment rates were constant. Climate change resulted in on average 9% lower cereal production, unchanged grass production and more volatile crop yield as well as 4% higher farm incomes on average compared to the deterministic scenario. The scenario with a combination of climate change and policy uncertainty increased the mean farm income more than a scenario with only one source of uncertainty. On the other hand, land use and farm labour were negatively affected under these conditions compared to the deterministic case. Highlighting the potential influence of climate change and policy uncertainty on the performance of the farm sector our results underline the potential error in neglecting either of these two uncertainties in studies of agricultural production, land use and welfare.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308521x ISBN Medium
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4986
Permanent link to this record
 

 
Author Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K.
Title Improving the use of crop models for risk assessment and climate change adaptation Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 296-306
Keywords Crop model; Risk assessment; Climate change impacts; Adaptation; Climate models; Uncertainty
Abstract Highlights

• 14 criteria for use of crop models in assessments of impacts, adaptation and risk • Working with stakeholders to identify timing of risks is key to risk assessments. • Multiple methods needed to critically assess the use of climate model output • Increasing transparency and inter-comparability needed in risk assessments

Abstract

Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5175
Permanent link to this record
 

 
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Kirchner, M.; Schmid, E.
Title Climate change impacts on farm production, landscape appearance, and the environment: Policy scenario results from an integrated field-farm-landscape model in Austria Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 145 Issue Pages 39-50
Keywords Integrated land use modeling; Climate change impacts; Mitigation; Adaptation; Field-farm-landscape; Environment; agricultural landscapes; land-use; netherlands; adaptation; indicators; management; responses
Abstract Climate change is among the major drivers of agricultural land use change and demands autonomous farm adaptation as well as public mitigation and adaptation policies. In this article, we present an integrated land use model (ILM) mainly combining a bio-physical model and a bio-economic farm model at field, farm and landscape levels. The ILM is applied to a cropland dominated landscape in Austria to analyze impacts of climate change and mitigation and adaptation policy scenarios on farm production as well as on the abiotic environment and biotic environment. Changes in aggregated total farm gross margins from three climate change scenarios for 2040 range between + 1% and + 5% without policy intervention” and compared to a reference situation under the current climate. Changes in aggregated gross margins are even higher if adaptation policies are in place. However, increasing productivity from climate change leads to deteriorating environmental conditions such as declining plant species richness and landscape appearance. It has to be balanced by mitigation and adaptation policies taking into account effects from the considerable spatial heterogeneity such as revealed by the ILM. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4767
Permanent link to this record
 

 
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W.
Title Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 141 Issue Pages 160-173
Keywords Integrated assessment; Global change; Sustainability; Agriculture; Farm; structural change; Spatially explicit; Climate smart agriculture; affecting land-use; integrated assessment; multiobjective optimization; analytical framework; trade-offs; systems; uncertainties; policies; future; adaptation
Abstract Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4742
Permanent link to this record
 

 
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W.
Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 120 Issue Pages 61-75
Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations
Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4737
Permanent link to this record