|   | 
Details
   web
Records
Author Sandhu, H.; Wratten, S.; Costanza, R.; Pretty, J.; Porter, J.R.; Reganold, J.
Title Significance and value of non-traded ecosystem services on farmland Type Journal Article
Year 2015 Publication PeerJ Abbreviated Journal PeerJ
Volume 3 Issue Pages e762
Keywords Agroecosystems; Arable farmland; Economic value; Ecosystem services; Externalities; New Zealand
Abstract Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68-200 ha(-1) yr(-1) for biological control of pests and from US$ 110-425 ha(-1)yr(-1) for N mineralisation in the organic systems versus US$ 0 ha(-1)yr(-1) for biological control of pests and from US$ 60-244 ha(-1)yr(-1) for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750-4536 ha(-1)yr(-1), with US$ 1585-2560 ha(-1)yr(-1) in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES-rich agricultural systems, provided by non-traded species to global agriculture.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2167-8359 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4807
Permanent link to this record
 

 
Author Coles, G.D.; Wratten, S.D.; Porter, J.R.
Title Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production Type Journal Article
Year 2016 Publication PeerJ Abbreviated Journal PeerJ
Volume 4 Issue Pages 17
Keywords Agroecology; Forage utilisation; Food costs; Nutrition; Whole-year; production; New Zealand; Food access; Food security; humans
Abstract Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially available pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their town food needs. We hope that lour model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2167-8359 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4774
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R.; Sandhu, H.S.
Title Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods Type Journal Article
Year 2014 Publication International Journal of Biodiversity Science, Ecosystem Services & Management Abbreviated Journal International Journal of Biodiversity Science, Ecosystem Services & Management
Volume 10 Issue 3 Pages 177-186
Keywords ecosystem functions; litter decomposition; mineralisation; assessment methodologies; stoichiometry
Abstract Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii) stoichiometric imbalances need to be avoided between the supply and the demand of the nutrients to maintain the ES provision in terrestrial ecosystems and (iii) stoichiometric ratios can act as a management tool at a field, farm and at landscape level, to complement other compositional biodiversity and functional diversity approaches to ensure sustainable provision of ES.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2151-3732 2151-3740 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4522
Permanent link to this record
 

 
Author Kersebaum, K.; Kroes, J.; Gobin, A.; Takáč, J.; Hlavinka, P.; Trnka, M.; Ventrella, D.; Giglio, L.; Ferrise, R.; Moriondo, M.; Dalla Marta, A.; Luo, Q.; Eitzinger, J.; Mirschel, W.; Weigel, H.-J.; Manderscheid, R.; Hoffmann, M.; Nejedlik, P.; Iqbal, M.; Hösch, J.
Title Assessing uncertainties of water footprints using an ensemble of crop growth models on winter wheat Type Journal Article
Year 2016 Publication Water Abbreviated Journal Water
Volume 8 Issue 12 Pages 571
Keywords
Abstract Crop productivity and water consumption form the basis to calculate the water footprint (WF) of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment) experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4987
Permanent link to this record
 

 
Author Gobin, A.; Kersebaum, K.; Eitzinger, J.; Trnka, M.; Hlavinka, P.; Takáč, J.; Kroes, J.; Ventrella, D.; Marta, A.; Deelstra, J.; Lalić, B.; Nejedlik, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Şaylan, L.; Stričevic, R.; Vučetić, V.; Zoumides, C.
Title Variability in the Water Footprint of Arable Crop Production across European Regions Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 2 Pages 93
Keywords
Abstract Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R² = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (c̅v̅ = 45%) and to a lesser extent to variability in crop water use (c̅v̅ = 21%). The WF variability between countries (c̅v̅ = 14%) is lower than the variability between seasons (c̅v̅ = 22%) and between crops (c̅v̅ = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4988
Permanent link to this record