toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U. doi  openurl
  Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
  Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 5 Issue 9 Pages eaau2406  
  Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon  
  Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2375-2548 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5227  
Permanent link to this record
 

 
Author Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G. url  openurl
  Title Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany Type Journal Article
  Year 2016 Publication Open Data Journal for Agricultural Research Abbreviated Journal Open Data J. Agric. Res.  
  Volume 2 Issue 1 Pages 1-10  
  Keywords  
  Abstract A six-year (1993-1998) multivariable data set for a four-plot intensive crop rotation (sugar beet – winter wheat – winter barley – winter rye – catch crop) located at Leibniz Centre for Agricultural Landscape Research (ZALF) Experimental Station, Müncheberg, Germany, is documented in detail. The experiment targets crop response to water supply on sandy soils (Eutric Cambisol), applying rain-fed and irrigated treatments. Weather as well as soil and crop processes were intensively monitored and management actions were consistently recorded. The data set contains coherent data for soil (water, nitrogen contents), crop (ontogenesis, plant, tiller and ear numbers, above-ground and root biomasses, yield, carbon and nitrogen content in biomass and their fractions, sugar content in beet), weather (all standard meteorological variables) and management (soil tillage, sowing, fertilisation, irrigation, harvest). In addition, observation methods are briefly described. The data set is available via the Open Research Data Portal at ZALF Müncheberg and is published under doi:10.4228/ZALF.1992.271. The data set was used for model intercomparison within the crop modelling part (CropM) of the international FACCE MACSUR project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2352-6378 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4762  
Permanent link to this record
 

 
Author Kyle, P.; Müller, C.; Calvin, K.; Thomson, A. url  doi
openurl 
  Title Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts Type Journal Article
  Year 2014 Publication Earth’s Future Abbreviated Journal Earth’s Future  
  Volume 2 Issue Pages 83-98  
  Keywords integrated assessment; climate impacts; emissions mitigation; representative concentration pathway; land-use; carbon; stabilization; cmip5  
  Abstract This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the representative concentration pathways (RCPs). We build on the recently completed Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6W/m(2) in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2328-4277 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4531  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 10 Issue Pages 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input Type Journal Article
  Year 2016 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 22 Issue Pages 117-127  
  Keywords soil physical-properties; carbon sequestration; microbial biomass; farming systems; nitrogen mineralization; earthworm populations; straw; incorporation; economic valuation; agricultural soils; different tillage; Organic farming; Ecosystem services; Economic valuation; Management; Informed decision making  
  Abstract As the degradation of global ecosystem services (ES) continues in the last five decades, maintaining or even enhancing the ES of agro-ecosystem is one of the approaches to mitigate the global ES loss. This study provides the first estimate of an economic valuation of ES provided by organic cereal crop production systems with different management practices in relation to organic matter input (low, medium and high). Our results show that organic matter inputs significantly affect the total ES value on organic cereal crop production systems. The system with high organic matter input has the highest gross total ES value (US$ 1969 ha(-1) yr(-1)), followed by the low organic matter input system (US$ 1688 ha(-1) yr(-1)), and the lowest ES value are found in the medium organic matter input system (US$ 1492 ha(-1) yr(-1)). Organic matter inputs have strong positive relationship with non-marketable ES values, while this relationship was not found in marketable ES values. Monetizing the ES can be used by land managers and policy makers to adjust management practices in terms of organic matter input in cereal production system with a long term goal for sustainable agriculture.  
  Address 2017-01-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4934  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: