toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Weindl, I.; Popp, A.; Bodirsky, B.L.; Rolinski, S.; Lotze-Campen, H.; Biewald, A.; Humpenoeder, F.; Dietrich, J.P.; Stevanovic, M. doi  openurl
  Title Livestock and human use of land: Productivity trends and dietary choices as drivers of future land and carbon dynamics Type Journal Article
  Year 2017 Publication Global and Planetary Change Abbreviated Journal Global And Planetary Change  
  Volume 159 Issue Pages (down) 1-10  
  Keywords Livestock productivity; Diets; Land use; Deforestation; Carbon emissions; Greenhouse gas mitigation; Greenhouse-Gas Emissions; Climate-Change Mitigation; Food-Demand; Crop; Productivity; Cover Change; Systems; Agriculture; Intensification; Environment; Deforestation  
  Abstract Land use change has been the primary driving force of human alteration of terrestrial ecosystems. With 80% of agricultural land dedicated to livestock production, the sector is an important lever to attenuate land requirements for food production and carbon emissions from land use change. In this study, we quantify impacts of changing human diets and livestock productivity on land dynamics and depletion of carbon stored in vegetation, litter and soils. Across all investigated productivity pathways, lower consumption of livestock products can substantially reduce deforestation (47-55%) and cumulative carbon losses (34-57%). On the supply side, already minor productivity growth in extensive livestock production systems leads to substantial CO2 emission abatement, but the emission saving potential of productivity gains in intensive systems is limited, also involving trade-offs with soil carbon stocks. If accounting for uncertainties related to future trade restrictions, crop yields and pasture productivity, the range of projected carbon savings from changing diets increases to 23-78%. Highest abatement of carbon emissions (63-78%) can be achieved if reduced consumption of animal-based products is combined with sustained investments into productivity increases in plant production. Our analysis emphasizes the importance to integrate demand- and supply-side oriented mitigation strategies and to combine efforts in the crop and livestock sector to enable synergies for climate protection.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8181 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5188  
Permanent link to this record
 

 
Author Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G. url  doi
openurl 
  Title Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume Issue Pages (down)  
  Keywords Biomass; Grasslands; Modelling; Multi-model ensemble; Soil processes  
  Abstract • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area LiveM Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4768  
Permanent link to this record
 

 
Author Paas, W.; Kanellopoulos, A.; van de Ven, G.; Reidsma, P. url  doi
openurl 
  Title Integrated impact assessment of climate and socio-economic change on dairy farms in a watershed in the Netherlands Type Journal Article
  Year 2016 Publication NJAS – Wageningen Journal of Life Sciences Abbreviated Journal NJAS – Wageningen Journal of Life Sciences  
  Volume Issue Pages (down)  
  Keywords climate change; bio-economic model; explorations; land-use; 2050-scenario  
  Abstract Climate and socio-economic change will affect the land use and the economic viability of Dutch dairy farms. Explorations of future scenarios, which include different drivers and impacts, are needed to perform ex-ante policy assessment. This study uses a bio-economic farm model to assess impacts of climate and socio-economic change on dairy farms in a sandy area in the Netherlands. Farm data from the Farm Accountancy Data Network provided information on the current production levels and available farm resources. First, the farm plans of individual farms were optimized in the current situation to benchmark farms and assess the current scope for improvement. Secondly, simulations for two scenarios were included: a Global Economy with 2 °C global temperature rise (GE/W+) and a Regional Community with 1 °C global temperature rise (RC/G). The impacts of climate change, extreme events, juridical change (including abolishment of milk quota), technological change and price changes were evaluated in separate model runs within the predefined scenarios. We found that farms can increase profit both by intensification and land expansion; the latter especially for medium sized farms (less than 70 cows). Climate change including the effect of increased occurrence of extreme events may negatively affect farm gross margin in the GE/W+ scenario. Lower gross margins are compensated for by the effects of technology and price changes. In contrast with the GE/W+ scenario, climate change has positive impacts on farm profit in RC/G, but less favourable farm input-output price ratios have a negative effect. Technological change is needed to compensate for revenue losses due to higher input prices. In both GE/W+ and RC/G scenarios, dairy farms increase production and the use of artificial fertilizer. Medium sized farms have more options to increase profit than the large farms: they benefit more from the abolishment of the milk quota and better adapt to negative and positive impacts of climate change. While the exact impact of different drivers will always remain uncertain, this study showed that changes in prices, technology and markets have a relatively larger impact than climate change, even when extreme events are taken into account. By using whole farm plans as activities that can be selected, the model is grounded in observations, and it was shown that half of the farms are gross margin maximizers as assumed in the model. The model therefore indicates ‘what could happen if’, and gives insights in drivers and impacts of dairy farming in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-5214 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4712  
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P. url  doi
openurl 
  Title Simulating and delineating future land change trajectories across Europe Type Journal Article
  Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume Issue Pages (down) in press  
  Keywords land use change; land system; modeling; scenario; Europe; ecosystem services  
  Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: