|   | 
Details
   web
Records
Author Ruiz-Ramos, M.; Trnka, M.
Title Riesgos asociados a los eventos extremos meteorológicos para la producción de trigo en Europa Type Report
Year 2015 Publication Tierras Abbreviated Journal
Volume 224 C6 - Issue Pages (down) 92-98
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2077
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages (down) 87-105
Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region
Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4662
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Witzke, H.; Noleppa, S.; Schwarz, G.
Title Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 136 Issue Pages (down) 79-84
Keywords Plant breeding; CO2 emissions; Cost–benefit analysis; Social rate of return; Agricultural research policy
Abstract Highlights • We analyze the economic effects of plant breeding research in Germany. • Effects of reduced CO2 emissions due to productivity increases are being quantified. • Expansion of global agricultural area has been reduced by 1–1.5 million ha. • CO2 emissions have been reduced by 160–235 million tons. • German plant breeding research has an economic value of 10.8–15.6 billion EUR. Abstract We analyze the economic effects of plant breeding research in Germany. In addition to market effects, for the first time also effects of reduced CO2 emissions due to productivity increases are being quantified. The analysis shows that investments in German plant breeding research in the period 1991–2010 have reduced the global expansion of agricultural area by 1–1.5 million hectares. This has led to reduced CO2 emissions of 160–235 million tons. The economic value generated by plant breeding research, through increased production and reduced greenhouse gas emissions, is estimated at 10.8–15.6 billion EUR in the same period. This can be translated into a social rate of return on research investment in the range of 40–80% per year. Projections for the period 2011–2030 generate a return rate in the range of 65–140% per year. Investments into plant breeding research in Germany are highly profitable from a societal point of view. At the same time, our results show significant under-investments in agricultural research in Germany. These results provide a good justification for policy-makers to reverse funding cuts for public agricultural research over the last decades and to improve institutional conditions for private research, e.g. through better protection of intellectual property rights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4999
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E.
Title Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 46 Issue Pages (down) 75-90
Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water
Abstract Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4675
Permanent link to this record
 

 
Author Biewald, A.; Lotze-Campen, H.; Otto, I.; Brinckmann, N.; Bodirsky, B.; Weindl, I.; Popp, A.; Schellnhuber, H.J.
Title The Impact of Climate Change on Costs of Food and People Exposed to Hunger at Subnational Scale Type Report
Year 2015 Publication PIK Report Abbreviated Journal
Volume 128 Issue Pages (down) 73
Keywords ftnotmacsur
Abstract Climate change and socioeconomic developments will have a decisive impact on people exposed to hunger. This study analyses climate change impacts on agriculture and potential implications for the occurrence of hunger under different socioeconomic scenarios for 2030, focusing on the world regions most affected by poverty today: the Middle East and North Africa, South Asia, and Sub-Saharan Africa. We use a spatially explicit, agroeconomic land-use model to assess agricultural vulnerability to climate change. The aims of our study are to provide spatially explicit projections of climate change impacts on Costs of Food, and to combine them with spatially explicit hunger projections for the year 2030, both under a poverty, as well as a prosperity scenario. Our model results indicate that while average yields decrease with climate change in all focus regions, the impact on the Costs of Food is very diverse. Costs of Food increase most in the Middle East and North Africa, where available agricultural land is already fully utilized and options to import food are limited. The increase is least in Sub-Saharan Africa, since production there can be shifted to areas which are only marginally affected by climate change and imports from other regions increase. South Asia and Sub-Saharan Africa can partly adapt to climate change, in our model, by modifying trade and expanding agricultural land. In the Middle East and North Africa, almost the entire population is affected by increasing Costs of Food, but the share of people vulnerable to hunger is relatively low, due to relatively strong economic development in these projections. In Sub-Saharan Africa, the Vulnerability to Hunger will persist, but increases in Costs of Food are moderate. While in South Asia a high share of the population suffers from increases in Costs of Food and is exposed to hunger, only a negligible number of people will be exposed at extreme levels. Independent of the region, the impacts of climate change are less severe in a richer and more globalized world. Adverse climate impacts on the Costs of Food could be moderated by promoting technological progress in agriculture. Improving market access would be advantageous for farmers, providing the opportunity to profitably increase production in the Middle East and North Africa as well as in South Asia, but may lead to increasing Costs of Food for consumers. In the long-term perspective until 2080, the consequences of climate change will become even more severe: while in 2030 56% of the global population may face increasing Costs of Food in a poor and fragmented world, in 2080 the proportion will rise to 73%.
Address
Corporate Author Thesis
Publisher Place of Publication Potsdam Editor
Language Summary Language Original Title
Series Editor Potsdam-Institut für Klimafolgenforschung Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 5000
Permanent link to this record