toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P. url  doi
openurl 
  Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 7 Pages (down) 1218-1240  
  Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management  
  Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4713  
Permanent link to this record
 

 
Author Morales, I.; Diaz, B.M.; Hermoso De Mendoza, A.; Nebreda, M.; Fereres, A. url  doi
openurl 
  Title The Development of an Economic Threshold for Nasonovia ribisnigri (Hemiptera: Aphididae) on Lettuce in Central Spain Type Journal Article
  Year 2013 Publication Journal of Economic Entomology Abbreviated Journal J. Econ. Entomol.  
  Volume 106 Issue 2 Pages (down) 891-898  
  Keywords Animals; Aphids/*physiology; Insect Control/economics/methods; Insecticides/administration & dosage; Lettuce/*growth & development; Nitriles/administration & dosage; Nonlinear Dynamics; Population Density; Pyrethrins/administration & dosage; Seasons; Spain  
  Abstract This study reports economic thresholds for the lettuce aphid Nasonovia ribisnigri (Mosley), based exclusively on cosmetic damage, that is, presence or absence of aphids at harvest time. Field trials were conducted in La Poveda Experimental Farm, Madrid (Spain) during autumn (2004 and 2005) and spring (2005 and 2006). Plants were arranged in plots and just before the formation of lettuce hearts they were infested with different densities of N. ribisnigri. Two days later, half of each plot was treated with tau-fluvalinate (Klartan24AF) and the other half remained as an untreated control. Economic thresholds were obtained from nonlinear regressions calculated between the percentage of commercial plants at the end of the crop cycle for both, treated and untreated semiplots, and the different initial densities of N. ribisnigri per plant. Two criteria were used to consider a commercial lettuce plant: a conservative estimate (0 aphids/plant) and a lax one (< 5 aphids/plant). Thus, an economic threshold was established for each season and criterium. The economic thresholds that were obtained with the most and least conservative criteria were in spring 0.06 and 0.12 aphids per plant, and in autumn 0.07 and 0.13 aphids per plant, respectively. These results show that to avoid cosmetic damage, insecticide sprays are required when a very low aphid density is detected in lettuce seedlings soon after transplant.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0493 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4497  
Permanent link to this record
 

 
Author Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rotter, R.; Kersebaum, K.C.; Olesen, J.E.; Patil, R.H.; Saylan, L.; Caldag, B.; Caylak, O. doi  openurl
  Title Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria Type Journal Article
  Year 2013 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 151 Issue 6 Pages (down) 813-835  
  Keywords simulate yield response; climate-change scenarios; central-europe; nitrogen dynamics; high-temperature; future climate; elevated co2; soil; growth; variability  
  Abstract The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4601  
Permanent link to this record
 

 
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P. url  doi
openurl 
  Title Simulating the Nutritive Value of Timothy Summer Regrowth Type Journal Article
  Year 2013 Publication Agronomy Journal Abbreviated Journal Agronomy Journal  
  Volume 105 Issue 3 Pages (down) 563  
  Keywords varying n nutrition; cation-anion difference; spring growth; swine manure; leaf-area; nitrogen; yield; model; digestibility; dynamics  
  Abstract The process-based grass model, CATIMO, simulates the spring growth and nutritive value of timothy (Phleum pratense L.), a forage species widely grown in Scandinavia and Canada, but the nutritive value of the summer regrowth has never been simulated. Our objective was to improve CATIMO for simulating the N concentration, neutral detergent fiber (NDF), in vitro digestibility of NDF (dNDF), and in vitro true digestibility of dry matter (IVTD) of summer regrowth. Daily changes in summer regrowth nutritive value were simulated by modifying key crop parameters that differed from spring growth. More specifically, the partitioning fraction to leaf blades was increased to increase the leaf-to-weight ratio, and daily changes in NDF and dNDF of leaf blades and stems were reduced. The modified CATIMO model was evaluated with data from four independent experiments in eastern and western Canada and Finland. The model performed better for eastern Canada than for the other locations, but the nutritive value attributes of the summer regrowth across locations (range of normalized RMSE = 8-25%, slope < 0.17, R-2 < 0.10) were not simulated as well as those of the spring growth (range of normalized RMSE = 4-16%, 0.85 < slope < 1.07, R-2 > 0.61). These modeling results highlight knowledge gaps in timothy summer regrowth and prospective research directions: improved knowledge of factors controlling the nutritive value of the timothy summer regrowth and experimental measurements of leaf-to-weight ratio and of the nutritive value of leaves and stems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1962 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4493  
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J. doi  openurl
  Title Long-term effects of conversion to organic farming on ecosystem services – a model simulation case study and on-farm case study in Denmark Type Journal Article
  Year 2018 Publication Agroecology and Sustainable Food Systems Abbreviated Journal Agroecology and Sustainable Food Systems  
  Volume 42 Issue 5 Pages (down) 504-529  
  Keywords Long-term; conversion; economic value; ecosystem services; organic farming; agricultural policytrade-offs; Greenhouse-Gas Emissions; Former Arable Soils; Daisy Model; Crop; Production; Conventional Agriculture; Straw Incorporation; Production; Systems; Nitrogen Dynamics; Climate-Change; Water-Balance  
  Abstract Organic agriculture aims to produce food while establishing an ecological balance to augment ecosystem services (ES) and has been rapidly expanding in the world since the 1980s. Recently, however, in several European countries, including Denmark, organic farmers have converted back to conventional farming. Hence, understanding how agricultural ES are affected by the number of years since conversion to organic farming is imperative for policy makers to guide future agricultural policy. In order to investigate the long-term effects of conversion to organic farming on ES we performed i) a model simulation case study by applying the Daisy model to simulate 14 different conversion scenarios for a Danish farm during a 65 year period with increasing number of years under organic farming, and ii) an on-farm case study in Denmark with one conventional farm, one organic farm under conversion, and three organic farms converted 10, 15 and 58 years ago, respectively. Both the model simulation case study and the on-farm case study showed that non-marketable ES values increased with increasing number of years under organic farming. Trade-offs between marketable and non-marketable ES were not evident, since also marketable ES values generally showed an increasing trend, except when the price difference between organic and conventional products in the model simulation study was the smallest, and when an alfalfa pre-crop in the on-farm case study resulted in a significantly higher level of plant available nitrogen, which boosted the yield and the associated marketable ES of the subsequent winter rye crop. These results indicate a possible benefit of preserving long-term organic farms and could be used to argue for agricultural policy interventions to offset further reduction in the number of organic farms or the land area under organic farming.  
  Address 2018-05-03  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-3565 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: