|   | 
Details
   web
Records
Author Bassu, S.; Brisson, N.; Durand, J.-L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; Basso, B.; Biernath, C.; Boogaard, H.; Conijn, S.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Gayler, S.; Grassini, P.; Hatfield, J.; Hoek, S.; Izaurralde, C.; Jongschaap, R.; Kemanian, A.R.; Kersebaum, K.C.; Kim, S.-H.; Kumar, N.S.; Makowski, D.; Müller, C.; Nendel, C.; Priesack, E.; Pravia, M.V.; Sau, F.; Shcherbak, I.; Tao, F.; Teixeira, E.; Timlin, D.; Waha, K.
Title How do various maize crop models vary in their responses to climate change factors Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 7 Pages (up) 2301-2320
Keywords Carbon Dioxide/metabolism; *Climate Change; Crops, Agricultural/growth & development/metabolism; Geography; Models, Biological; Temperature; Water/*metabolism; Zea mays/*growth & development/*metabolism; AgMIP; [Co2]; climate; maize; model intercomparison; simulation; uncertainty
Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2 ], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(-1) per °C. Doubling [CO2 ] from 360 to 720 μmol mol(-1) increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2 ] among models. Model responses to temperature and [CO2 ] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4510
Permanent link to this record
 

 
Author McKersie, B.
Title Planning for food security in a changing climate Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages (up) 3435-3450
Keywords Adaptation, Physiological; *Climate Change; Crops, Agricultural/growth & development; Droughts; *Food Supply; Zea mays/physiology; Climate change; DroughtGard; cropping systems; drought tolerance; genetic engineering; maize; marker-assisted selection; plant breeding
Abstract The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4568
Permanent link to this record
 

 
Author Ingram, J.S.I.; Porter, J.R.
Title Plant science and the food security agenda Type Journal Article
Year 2015 Publication Nature Plants Abbreviated Journal Nature Plants
Volume 1 Issue 11 Pages (up) 15173
Keywords africa; maize
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2055-026x 2055-0278 ISBN Medium Editorial Material
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4705
Permanent link to this record
 

 
Author Faye, B.; Webber, H.; Naab, J.B.; MacCarthy, D.S.; Adam, M.; Ewert, F.; Lamers, J.P.A.; Schleussner, C.-F.; Ruane, A.; Gessner, U.; Hoogenboom, G.; Boote, K.; Shelia, V.; Saeed, F.; Wisser, D.; Hadir, S.; Laux, P.; Gaiser, T.
Title Impacts of 1.5 versus 2.0 degrees C on cereal yields in the West African Sudan Savanna Type Journal Article
Year 2018 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 13 Issue 3 Pages (up) 034014
Keywords 1.5 degrees C; West Africa; food security; climate change; DSSAT; SIMPLACE; Climate-Change Impacts; Sub-Saharan Africa; Food Security; Heat-Stress; Canopy Temperature; Paris Agreement; Pearl-Millet; Maize Yield; Crop; Yields; Model; MACSUR or FACCE acknowledged.
Abstract To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 degrees C above pre-industrial levels, with the ambition to keep warming to 1.5 degrees C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 degrees C versus 2.0 degrees C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 degrees C compared to 1.5 degrees C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5196
Permanent link to this record
 

 
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.
Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 12 Issue 5 Pages (up) 054023
Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY
Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.
Address 2017-06-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5035
Permanent link to this record