toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. url  openurl
  Title The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages (down) 127-135  
  Keywords minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.  
  Abstract Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4795  
Permanent link to this record
 

 
Author Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A. url  doi
openurl 
  Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
  Year 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 288 Issue Pages (down) 103-111  
  Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield  
  Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4806  
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F. url  doi
openurl 
  Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 220 Issue Pages (down) 101-115  
  Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil  
  Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4673  
Permanent link to this record
 

 
Author Kollas, C.; Kersebaum, K.C.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G. de; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L. url  doi
openurl 
  Title Crop rotation modelling—A European model intercomparison Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 70 Issue Pages (down) 98-111  
  Keywords Model ensemble; Crop simulation models; Catch crop; Intermediate crop; Treatment; Multi-year; long-term experiment; climate-change; wheat production; n-fertilization; systems simulation; nitrogen dynamics; tillage intensity; winter-wheat; soil carbon; growth  
  Abstract • First model inter-comparison on crop rotations. • Continuous simulation of multi-year crop rotations yields outperformed single-year simulation. • Low accuracy of yield predictions in less commonly modelled crops such as potato, radish, grass vegetation. • Multi-model mean prediction was found to minimise the likely error arising from single-model predictions. • The representation of intermediate crops and carry-over effects in the models require further research efforts.

Diversification of crop rotations is considered an option to increase the resilience of European crop production under climate change. So far, however, many crop simulation studies have focused on predicting single crops in separate one-year simulations. Here, we compared the capability of fifteen crop growth simulation models to predict yields in crop rotations at five sites across Europe under minimal calibration. Crop rotations encompassed 301 seasons of ten crop types common to European agriculture and a diverse set of treatments (irrigation, fertilisation, CO2 concentration, soil types, tillage, residues, intermediate or catch crops). We found that the continuous simulation of multi-year crop rotations yielded results of slightly higher quality compared to the simulation of single years and single crops. Intermediate crops (oilseed radish and grass vegetation) were simulated less accurately than main crops (cereals). The majority of models performed better for the treatments of increased CO2 and nitrogen fertilisation than for irrigation and soil-related treatments. The yield simulation of the multi-model ensemble reduced the error compared to single-model simulations. The low degree of superiority of continuous simulations over single year simulation was caused by (a) insufficiently parameterised crops, which affect the performance of the following crop, and (b) the lack of growth-limiting water and/or nitrogen in the crop rotations under investigation. In order to achieve a sound representation of crop rotations, further research is required to synthesise existing knowledge of the physiology of intermediate crops and of carry-over effects from the preceding to the following crop, and to implement/improve the modelling of processes that condition these effects.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4660  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume 10 Issue Pages (down) 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: