toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 79 Issue Pages (up) 184-196  
  Keywords Tactical nitrogen management; Climatic variability; Probability risk; assessment; LARS-WG; Crop model; STICS; stics crop model; generic model; simulation; yield; water; soil; fertilizer; behavior; climate; maize  
  Abstract Future progress in wheat yield will rely on identifying genotypes & management practices better adapted to the fluctuating environment Nitrogen (N) fertilization is probably the most important practice impacting crop growth. However, the adverse environmental impacts of inappropriate N management (e.g., lixiviation) must be considered in the decision-making process. A formal decisional algorithm was developed to tactically optimize the economic & environmental N fertilization in wheat. Climatic uncertainty analysis was performed using stochastic weather time-series (LARS-WG). Crop growth was simulated using STICS model. Experiments were conducted to support the algorithm recommendations: winter wheat was sown between 2008 & 2014 in a classic loamy soil of the Hesbaye Region, Belgium (temperate climate). Results indicated that, most of the time, the third N fertilization applied at flag-leaf stage by farmers could be reduced. Environmental decision criterion is most of the time the limiting factor in comparison to the revenues expected by farmers. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4749  
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F. url  doi
openurl 
  Title Bayesian methods for predicting LAI and soil water content Type Journal Article
  Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 2 Pages (up) 184-201  
  Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state  
  Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4629  
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P. doi  openurl
  Title Designing high-yielding wheat ideotypes for a changing climate Type Journal Article
  Year 2013 Publication Food and Energy Security Abbreviated Journal Food Energy Secur.  
  Volume 2 Issue 3 Pages (up) 185-196  
  Keywords Climate change impacts; crop modeling; LARS-WG; Sirius; wheat  
  Abstract Global warming is characterized by shifts in weather patterns and increases in climatic variability and extreme events. New wheat cultivars will be required for a rapidly changing environment, putting severe pressure on breeders who must select for climate conditions which can only be predicted with a great degree of uncertainty. To assist breeders to identify key wheat traits for improvements under climate change, wheat ideotypes can be designed and tested in silico using a wheat simulation model for a wide range of future climate scenarios predicted by global climate models. A wheat ideotype is represented by a set of cultivar parameters in a model, which could be optimized for best wheat performance under projected climate change. As an example, high-yielding wheat ideotypes were designed at two contrasting European sites for the 2050 (A1B) climate scenario. Simulations showed that wheat yield potential can be substantially increased for new ideotypes compared with current wheat varieties under climate change. The main factors contributing to yield increase were improvement in light conversion efficiency, extended duration of grain filling resulting in a higher harvest index, and optimal phenology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2048-3694 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4505  
Permanent link to this record
 

 
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. url  doi
openurl 
  Title Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages (up) 188-198  
  Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage  
  Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4770  
Permanent link to this record
 

 
Author Kahiluoto, H.; Rötter, R.; Webber, H.; Ewert, F. openurl 
  Title The Role of Modelling in Adapting and Building the Climate Resilience of Cropping Systems Type Book Chapter
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages (up) 204-215  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher CAB International Place of Publication Wallingford Editor Fuhrer, J.; Gregory, P.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Climate Change Impact and Adaptation in Agricultural Systems Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2513  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: