|   | 
Details
   web
Records
Author Challinor, A.J.; Smith, M.S.; Thornton, P.
Title Use of agro-climate ensembles for quantifying uncertainty and informing adaptation Type Journal Article
Year 2013 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 170 Issue Pages (up) 2-7
Keywords Climate models; Crop models; Ensembles; Climate change; Adaptation; Food security; Climate variability; Uncertainty; Crop yield
Abstract ► Introduces the special issue on Agricultural prediction using climate model ensembles. ► Discuss remaining scientific challenges. ► Develops distinction between projection- and utility-based ensemble modelling. ► Recommendations made RE modelling and the analysis and reporting of uncertainty. Significant progress has been made in the use of ensemble agricultural and climate modelling, and observed data, to project future productivity and to develop adaptation options. An increasing number of agricultural models are designed specifically for use with climate ensembles, and improved methods to quantify uncertainty in both climate and agriculture have been developed. Whilst crop–climate relationships are still the most common agricultural study of this sort, on-farm management, hydrology, pests, diseases and livestock are now also examined. This paper introduces all of these areas of progress, with more detail being found in the subsequent papers in the special issue. Remaining scientific challenges are discussed, and a distinction is developed between projection- and utility-based approaches to agro-climate ensemble modelling. Recommendations are made regarding the manner in which uncertainty is analysed and reported, and the way in which models and data are used to make inferences regarding the future. A key underlying principle is the use of models as tools from which information is extracted, rather than as competing attempts to represent reality.
Address 2015-09-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4690
Permanent link to this record
 

 
Author Topp, K.; Eory, V.; Bannink, A.; Bartley, D.J.; Blanco-Penedo, I.; Cortignani, R.; Del Prado, A.; Dono, G.; Faverdin, P.; Graux, A.-I.; Hutchings, N.; Lauwers, L.; Özkan Gülzari, Ş.; Rolinski, S.; Ruiz Ramos, M.; Sandars, D.L.; Sándor, R.; Schoenhart, M.; Seddaiu, G.; van Middelkoop, J.; Weindl, I.; Kipling, R.P.
Title Modelling climate change adaptation in European agriculture: Definitions and Current Modelling Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages (up) L2.3.2-D
Keywords
Abstract Confidential content, in preparation for a peer-reviewed publication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4959
Permanent link to this record
 

 
Author Lehtonen, H.S.; Kässi, P.; Korhonen, P.; Niskanen, O.; Rötter, R.; Palosuo, T.; Liu, X.; Purola, T.
Title Specific problems and solutions in climate change adaptation in North Savo region Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages (up) Sp3-10
Keywords
Abstract Crop production for feed dominates land use in North Savo in eastern Finland. The value of dairy and beef production is appr. 70 % of the total value of agricultural production of the region. In climate change adaptation research we are especially interested in dairy and meat sectors, which are directly dependent on the development of productivity of crop production. Climate change implies changes in cereals and forage crop yields and nutritive quality. There are most likely increasing problems and risks related to overwintering and growing periods. Grass silage is mainly self-produced on farms and most often there is no market for silage. Silage production and use are vulnerable to changes in local climate, because lost yield cannot be easily replaced from market. Risks and costs due to increasing inter-annual yield volatility can be reduced by good management practices, such as crop rotation, plant protection, soil improvements and better crop protection against plant diseases.However the profitability of such measures is dependent on market and policy conditions. Nevertheless new cultivars and species, as well as various options for production and risk management, are most likely needed in future climate. Some adaptations may have multiple benefits which however may realize only in medium or long run. It is important to safeguard the most important and obviously needed adaptations, and identify market and socio-economic conditions which inhibit farmers from necessary adaptations and lead to reduced productivity and increased production costs. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2227
Permanent link to this record
 

 
Author Lehtonen, H.S.; Liu, X.; Purola, T.; Rötter, R.; Palosuo, T.
Title Farm level dynamic economic modelling of crop rotation with adaptation practices Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages (up) Sp3-9
Keywords
Abstract Agriculture is facing increasing challenges under volatile commodity markets, on-going climate change with more frequent extreme weather events and tightened environmental constraints. Crop rotation is considered essential and may even gain more importance for sustainable farming in the context of climate change challenges while monocropping is expected to become increasingly problematic. This is, among others, because of increasing plant protection challenges due to warmer climate which is expected to result in severe droughts, heavy rainfall and waterlogging in northern latitudes more frequently. Such changes require improved soil structure and water retention, also aided by crop rotations, to avoid yield losses. Our objective is to build and apply a dynamic optimization model of farm level crop rotation on many field parcels over 30-40 years. The model takes into account various adaptation management methods such as fungicide treatment, soil improvements such as liming, and nitrogen fertilization, simultaneously with dynamic crop rotation choices. However, these management options come along with costs. Using the model, outcomes of crop growth simulation modeling can be included into economic analysis. Simulated new cultivars, suited for a longer growing season, can be defined as alternatives to current cultivars, both having specific nutrient and other input requirements such as water, labor or pesticides. The model is used in evaluating the value of future cultivars and other management practices in climate and socio-economic scenarios. The first results show that expected market prices have major impacts on the management choices, the resulting yield levels, production and income over time. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2226
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Zarski, J.
Title Integrated assessment of business crop productivity and profitability for use in food supply forecasting Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages (up) Sp3-7
Keywords
Abstract Climate change suggests long periods without rainfall will occur in the future quite often. Previous approach on dependence crop-yields from size of rain confirms the existence of a statistically significant relation. We built a model describing the amount of precipitation and taking into account periods of drought, using a mixture of gamma distribution and one point-distribution. Parameter estimators were constructed from rainfall data using the method of maximum likelihood. Long series of days or decades of drought allow to determine the probabilities of adverse developments in agriculture as the basis for forecasting crop yields in the future (years 2030, 2050). Forecasted yields can be used for assessment of productivity and profitability of some selected crops in Kujavian-Pomeranian region. Assumptions and parameters of large-scale spatial economic models will be applied to build up relevant solutions. Calculated with this approach output could be useful to expect decrease in agricultural output in the region. It will enable to shape effective agricultural policy to know how to balance food supply and demand through appropriate managing with stored food raw material and/or import/export policies. Used precipitation-yields dependencies method let verify earlier used methodology through comparison of obtained solutions concerning forecasted yields and closed to it uncertainty analysis.This work was co-financed by NCBiR, Contract no. FACCE JPI/04/2012 – P100 PARTNER No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2224
Permanent link to this record