|   | 
Details
   web
Records
Author Reidsma, P.; Bakker, M.M.; Kanellopoulos, A.; Alam, S.J.; Paas, W.; Kros, J.; de Vries, W.
Title Sustainable agricultural development in a rural area in the Netherlands? Assessing impacts of climate and socio-economic change at farm and landscape level Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 141 Issue Pages (down) 160-173
Keywords Integrated assessment; Global change; Sustainability; Agriculture; Farm; structural change; Spatially explicit; Climate smart agriculture; affecting land-use; integrated assessment; multiobjective optimization; analytical framework; trade-offs; systems; uncertainties; policies; future; adaptation
Abstract Changes in climate, technology, policy and prices affect agricultural and rural development. To evaluate whether this development is sustainable, impacts of these multiple drivers need to be assessed for multiple indicators. In a case study area in the Netherlands, a bio-economic farm model, an agent-based land-use change model, and a regional emission model have been used to simulate rural development under two plausible global change scenarios at both farm and landscape level. Results show that in this area, climate change will have mainly negative economic impacts (dairy gross margin, arable gross margin, economic efficiency, milk production) in the warmer and drier W+ scenario, while impacts are slightly positive in the G scenario with moderate climate change. Dairy farmers are worse off than arable farmers in both scenarios. Conversely, when the W+ scenario is embedded in the socio-economic Global Economy (GE) scenario, changes in technology, prices, and policy are projected to have a positive economic impact, more than offsetting the negative climate impacts. Important is, however, that environmental impacts (global warming, terrestrial and aquatic eutrophication) are largely negative and social impacts (farm size, number of farms, nature area, odour) are mixed. In the G scenario combined with the socio-economic Regional Communities (RC) scenario the average dairy gross margin in particular is negatively affected. Social impacts are similarly mixed as in the GE scenario, while environmental impacts are less severe. Our results suggest that integrated assessments at farm and landscape level can be used to guide decision-makers in spatial planning policies and climate change adaptation. As there will always be trade-offs between economic, social, and environmental impacts stakeholders need to interact and decide upon most important directions for policies. This implies a choice between production and income on the one hand and social and environmental services on the other hand
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4742
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K.
Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages (down) 157-169
Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling
Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2 Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5172
Permanent link to this record
 

 
Author Ghaley, B.B.; Vesterdal, L.; Porter, J.R.
Title Quantification and valuation of ecosystem services in diverse production systems for informed decision-making Type Journal Article
Year 2014 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy
Volume 39 Issue Pages (down) 139-149
Keywords bio-physical quantification; combined food and energy system; economic valuation field measurements; land management; marketable and non-marketable ecosystem services; land-use change; carbon; farm; efficiency; crops; china; model; scale; field
Abstract The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4623
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J.
Title Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input Type Journal Article
Year 2016 Publication Ecosystem Services Abbreviated Journal Ecosystem Services
Volume 22 Issue Pages (down) 117-127
Keywords soil physical-properties; carbon sequestration; microbial biomass; farming systems; nitrogen mineralization; earthworm populations; straw; incorporation; economic valuation; agricultural soils; different tillage; Organic farming; Ecosystem services; Economic valuation; Management; Informed decision making
Abstract As the degradation of global ecosystem services (ES) continues in the last five decades, maintaining or even enhancing the ES of agro-ecosystem is one of the approaches to mitigate the global ES loss. This study provides the first estimate of an economic valuation of ES provided by organic cereal crop production systems with different management practices in relation to organic matter input (low, medium and high). Our results show that organic matter inputs significantly affect the total ES value on organic cereal crop production systems. The system with high organic matter input has the highest gross total ES value (US$ 1969 ha(-1) yr(-1)), followed by the low organic matter input system (US$ 1688 ha(-1) yr(-1)), and the lowest ES value are found in the medium organic matter input system (US$ 1492 ha(-1) yr(-1)). Organic matter inputs have strong positive relationship with non-marketable ES values, while this relationship was not found in marketable ES values. Monetizing the ES can be used by land managers and policy makers to adjust management practices in terms of organic matter input in cereal production system with a long term goal for sustainable agriculture.
Address 2017-01-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4934
Permanent link to this record
 

 
Author Vilvert, E.; Lana, M.; Zander, P.; Sieber, S.
Title Multi-model approach for assessing the sunflower food value chain in Tanzania Type Journal Article
Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages (down) 103-110
Keywords Sunflower; Food value chain; Modelling; Tanzania; Food security; Systems Simulation; Crop Model; Agricultural Systems; Farming Systems; Yield Response; Land-Use; Water; Aquacrop; Security; Stics
Abstract Sunflower is one of the major oilseeds produced in Tanzania, but due to insufficient domestic production more than half of the country’s demand is imported. The improvement of the sunflower food value chain (FVC) understanding is important to ensure an increase in the production, availability, and quality of edible oil. In order to analyse causes and propose solutions to increase the production of sunflower oil, a conceptual framework that proposes the combined use of different models to provide insights about the sunflower FVC was developed. This research focus on the identification of agricultural models that can provide a better understanding of the sunflower FVC in Tanzania, especially within the context of food security improvement. A FVC scheme was designed considering the main steps of sunflower production. Thereafter, relevant models were selected and placed along each step of the FVC. As result, the sunflower FVC model in Tanzania is organized in five steps, namely (1) natural resources; (2) crop production; (3) oil processing; (4) trade; and (5) consumption. Step 1 uses environmental indicators to analyse soil parameters on soil-water models (SWAT, LPJmL, APSIM or CroSyst), with outputs providing data for step 2 of the FVC. In the production step, data from step 1, together with other inputs, is used to run crop models (DSSAT, HERMES, MONICA, STICS, EPIC or AquaCrop) that analyse the impact on sunflower yields. Thereafter, outputs from crop models serve as input for bio-economic farm models (FSSIM or MODAM) to estimate production costs and farm income by optimizing resource allocation planning for step 2. In addition, outputs from crop models are used as inputs for macro-economic models (GTAP, MAGNET or MagPie) by adjusting supply functions and environmental impacts within steps 3, 4, and 5. These models simulate supply and demand, including the processing of products to determine prices and trade volumes at market equilibrium. In turn, these data is used by bio-economic farm models to assess sunflower returns for different farm types and agro-environmental conditions. Due to the large variety of models, it is possible to assess significant parts of the FVC, reducing the need to make assumptions, while improving the understanding of the FVC.
Address 2018-01-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5187
Permanent link to this record