|   | 
Details
   web
Records
Author Müller, C.; Waha, K.; Bondeau, A.; Heinke, J.
Title Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 8 Pages (up) 2505-2517
Keywords Africa South of the Sahara; *Climate Change; Crops, Agricultural; Environment; Hydrology; *Models, Theoretical; Uncertainty; adaptation; climate change; development; impacts; modeling; sub-Saharan Africa
Abstract Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4534
Permanent link to this record
 

 
Author Milford, A.B.; Kildal, C.
Title Meat Reduction by Force: The Case of “Meatless Monday” in the Norwegian Armed Forces Type Journal Article
Year 2019 Publication Sustainability Abbreviated Journal Sustainability
Volume 11 Issue 10 Pages (up) 2741
Keywords sustainable diets; meat reduction; Meatless Monday; policy implementation; attitudes to vegetarian food; multivariate regression analysis; Climate-Change; Food Choices; Consumption; Attitudes; Consumers; Health; Diet; Willingness; Information; Barriers
Abstract Despite the scientific evidence that more plants and less animal-based food is more sustainable, policy interventions to reduce meat consumption are scarce. However, campaigns for meat free days in school and office canteens have spread globally over the last years. In this paper, we look at the Norwegian Armed Forces’ attempt to introduce the Meatless Monday campaign in their camps, and we evaluate the implementation process as well as the effect of the campaign on soldiers. Qualitative interviews with military staff indicate that lack of conviction about benefits of meat reduction, and the fact that kitchen staff did not feel ownership to the project, partly explain why vegetarian measures were not fully implemented in all the camps. A multivariate regression analysis with survey data from soldiers indicate that those who have experienced meat free days in the military kitchen are more prone to claim that joining the military has given them a more positive view on vegetarian food. Furthermore, the survey gives evidence that stated willingness to eat more vegetarian food is higher among soldiers who believe in the environmental and health benefits of meat reduction.
Address 2019-06-27
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5221
Permanent link to this record
 

 
Author Minet, J.; Laloy, E.; Tychon, B.; François, L.
Title Bayesian inversions of a dynamic vegetation model at four European grassland sites Type Journal Article
Year 2015 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 12 Issue 9 Pages (up) 2809-2829
Keywords eddy-covariance data; terrestrial ecosystem model; bioclimatic affinity; groups; monte-carlo-simulation; dry-matter content; leaf-area; climate-change; stomatal conductance; parameter-estimation; plant
Abstract Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM((ZS)) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m(-2) day(-1) and 0.50 to 1.28 mm day(-1), respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1726-4189 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4571
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.
Title Water savings potentials of irrigation systems: global simulation of processes and linkages Type Journal Article
Year 2015 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.
Volume 19 Issue 7 Pages (up) 3073-3091
Keywords surface-water; vegetation model; climate-change; food demand; fresh-water; efficiency; productivity; groundwater; impacts; requirements
Abstract Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatiotemporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also nontrivial downstream effects, we incorporated a process-based representation of the three major irrigation systems (surface, sprinkler, and drip) into a bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded world map of irrigation efficiencies that are calculated in direct linkage to differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with the lowest values (< 30 %) in south Asia and sub-Saharan Africa and the highest values (> 60 %) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2469 km(3) (2004-2009 average); irrigation water consumption is calculated to be 1257 km(3), of which 608 km(3) are non-beneficially consumed, i.e., lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world’s river basins, reduce the non-beneficial consumption at river basin level by 54 and 76 %, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15 %, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems. In this paper, presented opportunities associated with irrigation improvements are significant and suggest that they should be considered an important means on the way to sustainable food security.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1607-7938 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4739
Permanent link to this record
 

 
Author Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D.
Title Constraints and potentials of future irrigation water availability on agricultural production under climate change Type Journal Article
Year 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages (up) 3239-3244
Keywords Agricultural Irrigation/economics/*methods; Agriculture/economics/*methods; Carbon Dioxide/analysis; *Climate Change; Computer Simulation; Forecasting; *Models, Theoretical; Water Supply/*statistics & numerical data; adaptation; agriculture; hydrology; uncertainty
Abstract We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4790
Permanent link to this record