toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kersebaum, K.C.; Kollas, C.; Bindi, M.; Palosuo, T.; Wu, L.; Sharif, B.; Öztürk, I.; Trnka, M.; Hlavinka, P.; Nendel, C.; Müller, C.; Waha, K.; Armas-Herrera, C.; Olesen, J.E.; Eitzinger, J.; Roggero, P.P.; Conradt, T.; Martre, P.; Ferrise, R.; Moriondo, M.; Ruiz-Ramos, M.; Ventrella, D.; Rötter, R.P.; Wegehenkel, M.; Eckersten, H.; Lorite Torres, I.J.; Hernandez, C.G.; Launay, M.; De Wit, A.; Hoffmann, H.; Weigel, H.-J.; Manderscheid, R.; Beaudoin, N.; Constantin, J.; Garcia de Cortazar-Atauri, I.; Mary, B.; Ripoche, D.; Ruget, F. url  openurl
  Title Model inter-comparison on crop rotation effects – an intermediate report Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions. Crop rotations comprise various main crops (winter/spring wheat, winter/spring barley, rye, oat, maize, sugar beet, oil seed rape and potatoes) plus several catch crops. The experimental setup of the datasets included treatments such as modified soils, crops exchanged within the rotations, irrigation/rainfed, nitrogen fertilization, residue management, tillage and atmospheric CO2 concentration. 19 modeling teams registered to model either the whole rotation or single crops. Models which are capable to run the whole rotation should provide transient as well as single year simulations with a reset of initial conditions. In the first step only initial soil conditions (water and soil mineral N) of the first year and key phenological stages were provided to the modelers. For calibration, crop yields and biomass were provided for selected years but not for all seasons. In total the combination of treatments and seasons results in 301 years of simulation. Results were analyzed to evaluate the effect of transient simulation versus single-year simulation regarding crop yield, biomass, water and nitrogen balance components. Model results will be evaluated crop-specifically to identify crops with highest uncertainty and potential for model improvement. Full data will be provided to modelers for model-improvement and results will provide insights into model capabilities to reproduce treatments and crops. Further, the question of error propagation along the transient simulation of crop rotations will be addressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5104  
Permanent link to this record
 

 
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Kiese, R.; Wang, E.; Ewert, F. url  openurl
  Title Weather data aggregation’s effects on simulation of cropping systems: a model, production system and crop comparison Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages (up)  
  Keywords  
  Abstract Interactions of climate, soil and management practices in cropping systems can be simulated at different scales to provide information for decision making. Low resolution simulation need less effort, but important details could be lost through data aggregation effects (DAEs). This paper aims to provide a general method to assess the DAEs on weather data and the simulation of cropping systems, and further investigate how the DAEs vary with changing crop models, crops, variables and production systems. A 30-year continuous cropping system was simulated for winter wheat and silage maize and potential, water-limited and water-nitrogen-limited production situations. Climate data of 1 km resolution and aggregations to resolutions of 10 to 100 km was used as input for the simulations. The data aggregation narrowed the variation of weather data and DAEs increased with increasingly coarser spatial resolution, causing the loss of hot spots in simulated results. Spatial patterns were similar across different resolutions. Consistent with DAEs on weather data, the DAEs on simulated yield (0 to 1.2 t ha-1 for winter wheat and 0 to 1.7 t ha-1 for silage maize), evapotranspiration (3 to 45 mm yr-1 for winter wheat and 4 to 40 mm yr-1 for silage maize), and water use efficiency (0.02 to 0.25 kg m-3­ for winter wheat and 0.04 to 0.4 kg m-3­ for silage maize), increased with coarser spatial resolution. Thus, if spatial information is needed for local management decisions, higher resolution is needed to adequately capture the spatial heterogeneity or hot spots in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5141  
Permanent link to this record
 

 
Author Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G. url  openurl
  Title Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany Type Journal Article
  Year 2016 Publication Open Data Journal for Agricultural Research Abbreviated Journal Open Data J. Agric. Res.  
  Volume 2 Issue 1 Pages (up) 1-10  
  Keywords  
  Abstract A six-year (1993-1998) multivariable data set for a four-plot intensive crop rotation (sugar beet – winter wheat – winter barley – winter rye – catch crop) located at Leibniz Centre for Agricultural Landscape Research (ZALF) Experimental Station, Müncheberg, Germany, is documented in detail. The experiment targets crop response to water supply on sandy soils (Eutric Cambisol), applying rain-fed and irrigated treatments. Weather as well as soil and crop processes were intensively monitored and management actions were consistently recorded. The data set contains coherent data for soil (water, nitrogen contents), crop (ontogenesis, plant, tiller and ear numbers, above-ground and root biomasses, yield, carbon and nitrogen content in biomass and their fractions, sugar content in beet), weather (all standard meteorological variables) and management (soil tillage, sowing, fertilisation, irrigation, harvest). In addition, observation methods are briefly described. The data set is available via the Open Research Data Portal at ZALF Müncheberg and is published under doi:10.4228/ZALF.1992.271. The data set was used for model intercomparison within the crop modelling part (CropM) of the international FACCE MACSUR project.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-6378 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4762  
Permanent link to this record
 

 
Author Kersebaum, K.; C, url  openurl
  Title Results of uncalibrated model runs available (ROTATIONEFFECTS) Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages (up) D-C1.5  
  Keywords  
  Abstract The study ROTATIONEFFECT aims to compare the output of different models simulating field data sets with multi-year crop rotations including different treatments. Data sets for 5 locations in Europe were distributed to 19 interested modeller groups comprising a total of 201 crop growth seasons. In a first step only minimal information for calibration were provided to the modellers. In total 14 modelling teams sent their “uncalibrated” results as single-year calculations and/or calculations of rotation depending on the capability of the model. 7-10 models were capable to run the rotations as continuous runs. Up to 12 models provided single year simulations of at least one crop. Comparing results of models which provided both single year and continuous runs, show a little lower root mean square error for the continuous rotations runs. Cereal crop yields were generally better simulated than tuber/beet yields. Additionally, the models’ response to various treatments (irrigation/rainfed, nitrogen level, CO2 level, residue management/ tillage, catch crops) were compared to observed differences. First indicators of model performance have been developed and presented at international conferences. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2230  
Permanent link to this record
 

 
Author Kersebaum, K.; C url  openurl
  Title Model intercomparison for calibrated models Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 4 Issue Pages (up) D-C1.6  
  Keywords  
  Abstract The study ROTATIONEFFECT aims to compare the output of different models simulating field data sets with multi-year crop rotations including different treatments.Within the first Step (1a2a) data sets (comprising a total of 301 crop growth seasons) for 5 locations in Europe were distributed to 15 interested modeller groups.For this step only minimal information for calibration were provided to the modellers. In total 15 modelling teams sent their “uncalibrated” results as single-year calculations and/or continuous calculations of rotation depending on the capability of the model. Results have been evaluated and the paper submitted (European Journal of Agronomy).Now, within the 2nd step (1b2b) modellers were provided with more information on the crop for the calibration of models. Again, results of calibrated runs were collected.6 models were capable to run the rotations as continuous runs and another set of 6 models provided single year simulations.A first overview of the improvement of predictions due to calibration has been produced. Result files have been uploaded to the web platform for CropM results at Aarhus University (Work package C2 – data management). No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: