toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P. doi  openurl
  Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
  Year 2018 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 209-224  
  Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation  
  Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5186  
Permanent link to this record
 

 
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Specka, X.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Cammarano, D.; Schulman, A.H. doi  openurl
  Title Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments Type Journal Article
  Year 2018 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 24 Issue 3 Pages 1291-1307  
  Keywords barley; climate change; Europe; impact; super-ensemble; uncertainty; Nitrogen Dynamics; Multimodel Ensembles; Simulation-Models; Change; Scenarios; Yield; Rice; Weather; Growth; Wheat; Maize  
  Abstract Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.  
  Address 2018-03-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5194  
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5199  
Permanent link to this record
 

 
Author Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; Moriondo, M.; Rodriguez, A.; Ruiz-Ramos, M.; Takáč, J.; Bezák, P.; Ventrella, D.; Ruget, F.; Capellades, G.; Kahiluoto, H. doi  openurl
  Title Sensitivity of European wheat to extreme weather Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 222 Issue Pages 209-217  
  Keywords European wheat; Cultivar; Weather; Extreme; Climate change; Yield response; High-Temperature; Heat-Stress; Use Efficiency; Growth-Stages; Winter-Wheat; Yield; Crop; Barley; Tolerance  
  Abstract The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21 degrees to 61.34 degrees and longitudes- 6.02 degrees to 26.24 degrees) during the period 1991-2014. All the observed agro-climatic extremes (>= 31 degrees C, >= 35 degrees C, or drought around heading; >= 35 degrees C from heading to maturity; excessive rainfall; heavy rainfall and low global radiation) led to marked yield penalties in a selected set of European cultivars, whereas few cultivars were found to with no yield penalty in such conditions. There were no European wheat cultivars that responded positively (+ 10%) to drought after sowing, or frost during winter (- 15 degrees C and – 20 degrees C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently, a major future breeding challenge will be to evaluate the potential of combining such cultivar properties with other properties required under different growing conditions with, for example, long day conditions at higher latitudes, when the intensity and frequency of extremes rapidly increase.  
  Address 2018-06-05  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5200  
Permanent link to this record
 

 
Author Rodriguez, A.; Ruiz-Ramos, M.; Palosuo, T.; Carter, T.R.; Fronzek, S.; Lorite, I.J.; Ferrise, R.; Pirttioja, N.; Bindi, M.; Baranowski, P.; Buis, S.; Cammarano, D.; Chen, Y.; Dumont, B.; Ewert, F.; Gaiser, T.; Hlavinka, P.; Hoffmann, H.; Hohn, J.G.; Jurecka, F.; Kersebaum, K.C.; Krzyszczak, J.; Lana, M.; Mechiche-Alami, A.; Minet, J.; Montesino, M.; Nendel, C.; Porter, J.R.; Ruget, F.; Semenov, M.A.; Steinmetz, Z.; Stratonovitch, P.; Supit, I.; Tao, F.; Trnka, M.; de Wit, A.; Roetter, R.P. doi  openurl
  Title Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations Type Journal Article
  Year 2019 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 264 Issue Pages 351-362  
  Keywords Wheat adaptation; Uncertainty; Climate change; Decision support; Response surface; Outcome confidence; Climate-Change Impacts; Response Surfaces; Wheat; Uncertainty; Yield; Simulation; 21St-Century; Productivity; Temperature; Projections  
  Abstract unless local adaptation can ameliorate these impacts. Ensembles of crop simulation models can be useful tools for assessing if proposed adaptation options are capable of achieving target yields, whilst also quantifying the share of uncertainty in the simulated crop impact resulting from the crop models themselves. Although some studies have analysed the influence of ensemble size on model outcomes, the effect of ensemble composition has not yet been properly appraised. Moreover, results and derived recommendations typically rely on averaged ensemble simulation results without accounting sufficiently for the spread of model outcomes. Therefore, we developed an Ensemble Outcome Agreement (EOA) index, which analyses the effect of changes in composition and size of a multi-model ensemble (MME) to evaluate the level of agreement between MME outcomes with respect to a given hypothesis (e.g. that adaptation measures result in positive crop responses). We analysed the recommendations of a previous study performed with an ensemble of 17 crop models and testing 54 adaptation options for rainfed winter wheat (Triticum aestivwn L.) at Lleida (NE Spain) under perturbed conditions of temperature, precipitation and atmospheric CO2 concentration. Our results confirmed that most adaptations recommended in the previous study have a positive effect. However, we also showed that some options did not remain recommendable in specific conditions if different ensembles were considered. Using EOA, we were able to identify the adaptation options for which there is high confidence in their effectiveness at enhancing yields, even under severe climate perturbations. These include substituting spring wheat for winter wheat combined with earlier sowing dates and standard or longer duration cultivars, or introducing supplementary irrigation, the latter increasing EOA values in all cases. There is low confidence in recovering yields to baseline levels, although this target could be attained for some adaptation options under moderate climate perturbations. Recommendations derived from such robust results may provide crucial information for stakeholders seeking to implement adaptation measures.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5214  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: