toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, S.; Tao, F.; Zhang, Z. doi  openurl
  Title Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 87 Issue Pages 30-39  
  Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance  
  Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.  
  Address 2017-08-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5170  
Permanent link to this record
 

 
Author D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedic, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. url  doi
openurl 
  Title Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review Type Journal Article
  Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.  
  Volume 73 Issue 1 Pages 15-25  
  Keywords climate regulation; food, habitat services; land degradation prevention; moderation of extreme events; natural (landscape) heritage; primary production; regulation of water flows; water quality regulation; Grassland Management; Plant-Communities; Land Degradation; Inner-Mongolia; Trade-Offs; Biodiversity; Provision; Impact; Consequences; Conservation  
  Abstract The ecosystem services (ES) approach is a framework for describing the benefits of nature to human well-being, and this has become a popular instrument for assessment and evaluation of ecosystems and their functions. Grazing lands can provide a wide array of ES that depend on their management practices and intensity. This article reviews the trends and approaches used in the analysis of some relevant ES provided by grazing systems, in line with the framework principles of the Millennium Ecosystem Assessment (MA). The scientific literature provides reports of many studies on ES in general, but the search here focused on grazing systems, which returned only sixty-two papers. This review of published papers highlights that: (i) in some papers, the concept of ES as defined by the MA is misunderstood (e.g., lack of anthropocentric vision); (ii) 34% of the papers dealt only with one ES, which neglects the need for the multisectoral approach suggested by the MA; (iii) few papers included stakeholder involvement to improve local decision-making processes; (iv) cultural ES have been poorly studied despite being considered the most relevant for local and general stakeholders; and (v) stakeholder awareness of well-being as provided by ES in grazing systems can foster both agri-environmental schemes and the willingness to pay for these services.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-5242 ISBN Medium Review  
  Area Expedition (up) Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5191  
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5199  
Permanent link to this record
 

 
Author Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; Moriondo, M.; Rodriguez, A.; Ruiz-Ramos, M.; Takáč, J.; Bezák, P.; Ventrella, D.; Ruget, F.; Capellades, G.; Kahiluoto, H. doi  openurl
  Title Sensitivity of European wheat to extreme weather Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 222 Issue Pages 209-217  
  Keywords European wheat; Cultivar; Weather; Extreme; Climate change; Yield response; High-Temperature; Heat-Stress; Use Efficiency; Growth-Stages; Winter-Wheat; Yield; Crop; Barley; Tolerance  
  Abstract The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21 degrees to 61.34 degrees and longitudes- 6.02 degrees to 26.24 degrees) during the period 1991-2014. All the observed agro-climatic extremes (>= 31 degrees C, >= 35 degrees C, or drought around heading; >= 35 degrees C from heading to maturity; excessive rainfall; heavy rainfall and low global radiation) led to marked yield penalties in a selected set of European cultivars, whereas few cultivars were found to with no yield penalty in such conditions. There were no European wheat cultivars that responded positively (+ 10%) to drought after sowing, or frost during winter (- 15 degrees C and – 20 degrees C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently, a major future breeding challenge will be to evaluate the potential of combining such cultivar properties with other properties required under different growing conditions with, for example, long day conditions at higher latitudes, when the intensity and frequency of extremes rapidly increase.  
  Address 2018-06-05  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5200  
Permanent link to this record
 

 
Author Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J. doi  openurl
  Title Forecasting daily meteorological time series using ARIMA and regression models Type Journal Article
  Year 2018 Publication International Agrophysics Abbreviated Journal Int. Agrophys.  
  Volume 32 Issue 2 Pages 253-264  
  Keywords regression models; forecast; time series; meteorological quantities; Response Surfaces; Extreme Heat; Wheat; Climate  
  Abstract The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt-Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.  
  Address 2018-06-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium  
  Area Expedition (up) Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5202  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: