toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maiorano, A.; Martre, P.; Asseng, S.; Ewert, F.; Müller, C.; Rötter, R.P.; Ruane, A.C.; Semenov, M.A.; Wallach, D.; Wang, E.; Alderman, P.D.; Kassie, B.T.; Biernath, C.; Basso, B.; Cammarano, D.; Challinor, A.J.; Doltra, J.; Dumont, B.; Rezaei, E.E.; Gayler, S.; Kersebaum, K.C.; Kimball, B.A.; Koehler, A.-K.; Liu, B.; O’Leary, G.J.; Olesen, J.E.; Ottman, M.J.; Priesack, E.; Reynolds, M.; Stratonovitch, P.; Streck, T.; Thorburn, P.J.; Waha, K.; Wall, G.W.; White, J.W.; Zhao, Z.; Zhu, Y. doi  openurl
  Title Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 5-20  
  Keywords Impact uncertainty; High temperature; Model improvement; Multi-model ensemble; Wheat crop model  
  Abstract To improve climate change impact estimates and to quantify their uncertainty, multi-model ensembles (MMEs) have been suggested. Model improvements can improve the accuracy of simulations and reduce the uncertainty of climate change impact assessments. Furthermore, they can reduce the number of models needed in a MME. Herein, 15 wheat growth models of a larger MME were improved through re-parameterization and/or incorporating or modifying heat stress effects on phenology, leaf growth and senescence, biomass growth, and grain number and size using detailed field experimental data from the USDA Hot Serial Cereal experiment (calibration data set). Simulation results from before and after model improvement were then evaluated with independent field experiments from a CIMMYT world-wide field trial network (evaluation data set). Model improvements decreased the variation (10th to 90th model ensemble percentile range) of grain yields simulated by the MME on average by 39% in the calibration data set and by 26% in the independent evaluation data set for crops grown in mean seasonal temperatures >24 °C. MME mean squared error in simulating grain yield decreased by 37%. A reduction in MME uncertainty range by 27% increased MME prediction skills by 47%. Results suggest that the mean level of variation observed in field experiments and used as a benchmark can be reached with half the number of models in the MME. Improving crop models is therefore important to increase the certainty of model-based impact assessments and allow more practical, i.e. smaller MMEs to be used effectively.  
  Address 2016-09-13  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Newsletter July 2016 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropMwp;wos; ft=macsur; wsnot_yet; Approved no  
  Call Number MA @ admin @ Serial 4776  
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. url  doi
openurl 
  Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 2 Pages 025002  
  Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa  
  Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.  
  Address  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4733  
Permanent link to this record
 

 
Author Brouwer, F.; Sinabell, F. url  openurl
  Title Three years of collaboration in TradeM – Agricultural markets and prices Type Conference Article
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages SP6-4  
  Keywords  
  Abstract Some farmers may claim that climate change adaptation is easy compared to the difficulties caused by policiesAction based on weather observations only, is insufficient for farmers to respond to climate change. Researchers need support from farmers in understanding the responses in practice.Policies might be too slow to respond to needs for change in agriculture. Winners and losers seem to be observed everywhere.The impacts of climate change is heterogeneous among farm types and regionsEffects beyond 2050 remain largely unclear, mainly because the effects of extreme events are not consideredVariability of yields is important to farm incomes, but most studies only consider average changesFarmers are ready to design their site-specific adaptation response providing that new knowledge and learning spaces are available. A learning process based on integrated models, assessment of short- and long-term effects, is needed for farmers to adapt to climate change, price fluctuations and policy change. No Label  
  Address  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Brussels Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2343  
Permanent link to this record
 

 
Author Zander, P. url  openurl
  Title Modelling regional agricultural land use and climate change adaptation strategies in 4 case study regions Northern Germany Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 4 Issue Pages SP4-22  
  Keywords  
  Abstract  
  Address  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference TradeM International Workshop 2014 »Economics of integrated assessment approaches for agriculture and the food sector«, 25–27 November 2014, Hurdalsjø, Norway  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2212  
Permanent link to this record
 

 
Author Shechter, M. url  openurl
  Title The eocnomic impact of water scarcity under diverse water qualities and desalination policies Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 4 Issue Pages SP4-19  
  Keywords  
  Abstract  
  Address  
  Corporate Author (down) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference TradeM International Workshop 2014 »Economics of integrated assessment approaches for agriculture and the food sector«, 25–27 November 2014, Hurdalsjø, Norway  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: