|   | 
Details
   web
Records
Author Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Wang, C.; König, H.J.; Hu, J.
Title Future land use and food security scenarios for the Guyuan district of remote western China Type Journal Article
Year 2014 Publication iForest Abbreviated Journal iForest
Volume 7 Issue 6 Pages 372-384
Keywords land-use patterns; scenario analysis; dynamics of land systems modeling; food security; guyuan district; north-central china; cultivated land; dynamics; conversion; policy
Abstract Government policy is a major human factor that causes changes in land use. Decisions on land management and land-use planning, as well as the analysis and quantification of policy consequences, may greatly benefit from the simulation of the dynamics of land-use systems. In the present study, we predicted land-use changes and their potential impacts on food security in the environmentally fragile Guyuan District, Ningxia Hui Autonomous Region (north-central China), under the influence of a program to convert sloping agricultural land to conservation uses. Baseline and conservation policy scenarios (2005 to 2020) were developed based on input from local stakeholders and expert knowledge. For the baseline and conservation policies, we formulated high-, moderate-, and low-growth scenarios, analyzed the driving mechanisms responsible for the land-use dynamics, and then applied a previously developed “dynamics of land systems” model to simulate changes in land uses based on the driving mechanisms. We found that spatially explicit policies can promote the conversion of land to more sustainable uses; however, decreasing the amount of agricultural and urban land and increasing grassland and forest cover will increase the risk of grain shortages, and the effect will be more severe under the conservation and high- growth scenarios than under the baseline and low-growth scenarios. The Guyuan case study suggests that, during the next decade, important trade-offs between environmental conservation and food security will inevitably occur. Future land-use decisions should carefully consider the balance between land resource conservation, agricultural production, and urban expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1971-7458 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM Approved no
Call Number MA @ admin @ Serial 4547
Permanent link to this record
 

 
Author Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A.
Title Adverse weather conditions for European wheat production will become more frequent with climate change Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 7 Pages 637-643
Keywords scenarios; increase; models; variability; responses; extremes; impacts; shifts
Abstract Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed the probability of single and multiple adverse events occurring within one season. We showed that the occurrence of adverse conditions for 14 sites representing the main European wheat-growing areas might substantially increase by 2060 compared to the present (1981-2010). This is likely to result in more frequent crop failure across Europe. This study provides essential information for developing adaptation strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4545
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H.
Title Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 43-45
Keywords global dynamic vegetation model; LPJmL; grasslands; livestock production
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4541
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.
Title Adapting wheat in Europe for climate change Type Journal Article
Year 2014 Publication Journal of Cereal Science Abbreviated Journal J. Ceareal Sci.
Volume 59 Issue 3 Pages 245-256
Keywords A, maximum area of flag leaf area; ABA, abscisic acid; CV, coefficient of variation; Crop improvement; Crop modelling; FC, field capacity; GMT, Greenwich mean time; GS, growth stage; Gf, grain filling duration; HI, harvest index; HSP, heat shock protein; Heat and drought tolerance; Impact assessment; LAI, leaf area index; Ph, phylochron; Pp, photoperiod response; Ru, root water uptake; S, duration of leaf senescence; SF, drought stress factor; Sirius; Wheat ideotype
Abstract Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0733-5210 ISBN Medium Review
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4543
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P.
Title Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift Type Journal Article
Year 2014 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.
Volume 20 Issue 12 Pages 3686-3699
Keywords Agriculture/*methods; China; *Climate Change; Geography; *Models, Biological; *Temperature; Time Factors; Zea mays/*growth & development; adaptation; agriculture; climate change; crop; cultivar; impacts; phenology
Abstract Maize phenology observations at 112 national agro-meteorological experiment stations across China spanning the years 1981-2009 were used to investigate the spatiotemporal changes of maize phenology, as well as the relations to temperature change and cultivar shift. The greater scope of the dataset allows us to estimate the effects of temperature change and cultivar shift on maize phenology more precisely. We found that maize sowing date advanced significantly at 26.0% of stations mainly for spring maize in northwestern, southwestern and northeastern China, although delayed significantly at 8.0% of stations mainly in northeastern China and the North China Plain (NCP). Maize maturity date delayed significantly at 36.6% of stations mainly in the northeastern China and the NCP. As a result, duration of maize whole growing period (GPw) was prolonged significantly at 41.1% of stations, although mean temperature (Tmean) during GPw increased at 72.3% of stations, significantly at 19.6% of stations, and Tmean was negatively correlated with the duration of GPw at 92.9% of stations and significantly at 42.9% of stations. Once disentangling the effects of temperature change and cultivar shift with an approach based on accumulated thermal development unit, we found that increase in temperature advanced heading date and maturity date and reduced the duration of GPw at 81.3%, 82.1% and 83.9% of stations on average by 3.2, 6.0 and 3.5 days/decade, respectively. By contrast, cultivar shift delayed heading date and maturity date and prolonged the duration of GPw at 75.0%, 94.6% and 92.9% of stations on average by 1.5, 6.5 and 6.5 days/decade, respectively. Our results suggest that maize production is adapting to ongoing climate change by shift of sowing date and adoption of cultivars with longer growing period. The spatiotemporal changes of maize phenology presented here can further guide the development of adaptation options for maize production in near future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4544
Permanent link to this record