|   | 
Details
   web
Records
Author (down) Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K.
Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 157 Issue Pages 157-169
Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling
Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2 Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM, LiveM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5172
Permanent link to this record
 

 
Author (down) Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G.
Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
Year 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany
Volume 81 Issue Pages 1-10
Keywords stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants
Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-8472 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4797
Permanent link to this record
 

 
Author (down) Olesen, J.E.; Vignjevic, M.; Wollenweber, B.
Title Modelling adaptation of wheat cultivar to increasing temperatures and heat stress Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Climate change is expected to lead to yield reductions in cereals due to effects on both growth duration and physiological processes affecting assimilation and translocation to grains. However, some of these negative effects may be alleviated through plant breeding. A pot experiment with selected spring wheat varieties exposed to post anthesis heat stress (35 oC for 5 days) showed that the major factor affecting variety differences in heat tolerance was related to effects on green leaf area duration after heat stress. A field experiment with the same selected spring wheat varieties showed large differences between the varieties in crop development and in biomass. The data were used to calibrate the FASSET and Sirius crop models using a sequenced calibration procedure. Both models simulated crop growth and yield well. A sensitivity analysis with increasing temperature showed declining yields for both models with higher rates of yield reduction at temperature increases above 3oC. The models agreed on the pattern of yield decline between cultivars, with larger yield declines being related to earliness. The FASSET model was further modified to simulate effects of cultivar differences in remobilization of water soluble carbohydrates and effects of post-anthesis heat stress on crop yield. Effects of variation in threshold temperature for heat stress as well as response rate are tested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5105
Permanent link to this record
 

 
Author (down) Olesen, J.E.; Sharif, B.; Plauborg, F; Yin, X.; Bindi, M.; Doro, L.; Ewert, F.; Gaiser, R.F.T.; Giglio, L.; Hoffmann, H.H.M.; Kersebaum, K.C.; Iocola, I.; Moriondo, M.; Mula, L.; Roggero, P.P.; Ventrella, D.
Title Comparison of wheat models and their sensitivity towards tillage and N fertilization with different calibration approaches Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany
Notes Approved no
Call Number MA @ admin @ Serial 4920
Permanent link to this record
 

 
Author (down) Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title Centre for Regional change in the Earth System Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Centre for Regionalchange in the Earth System (CRES, cres-centre.net) is funded by the DanishStrategic Research Council for the period 2009-2014 and is coordinated by theDanish Meteorological Institute. CRES has established a coordinated researcheffort aiming to improve societal preparedness for climate change, inparticular for Denmark. The overall objective of CRES is to extend knowledge ofand reduce the uncertainties surrounding regional climate change and itsimpacts and thereby support future climate change adaptation and mitigationpolicies. Some of the objectives that also have large synergies with theeffects in the CropM theme of MACSUR are a) to reduce uncertainty surroundingregional climate change and its impacts for the period 2020-2050 by improvingmodel formulation and process understanding; b) identify key changes andtipping points in the regional hydrological system, agriculture, freshwater andestuarine ecosystems caused by changes in seasonality, dynamics and extremeevents of precipitation, droughts, heat waves and sea level rise; c) quantifyconfidence and uncertainties in predictions of future regional climate and itsimpacts, by improving the statistical methodology and substance and byintegrating interdisciplinary risk analyses; d) interpret these results inrelation to risk management approaches for climate change adaptation andmitigation. Studies in CRES of particular interest to MACSUR include a)Estimation on generic crop model uncertainties in projection of climate changeimpacts on wheat year, b) Assessment of uncertainties in projected effects onwater balance, crop productivity and nitrate leaching of changes in land use,climate and assessment models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5059
Permanent link to this record