|   | 
Details
   web
Records
Author (down) Holman, I.
Title Identifying where future landuse allocation in Europe is robust to climate and socio-economic uncertainty Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-23
Keywords
Abstract The spatial distribution of future European landuse will be influenced by yield changes arising from climate change and changes in profitability as a consequence of socio-economic change (arising from changing food demand; prices; technology etc).  To understand how these factors affect future land use allocation, a modelling system has been set up to predict agricultural land use across the EU under any scenario set of climate and socio- and techno-economic data. Metamodels of crop and forest yields, and optimal cropping and profit are derived from the outputs of the IMPEL, GOTILWA+, SFARMODand WaterGAP models. Profitability of each possible land use is modelled across the EU, assuming that use will change to the most profitable in the timescale being considered (2050). Land use in a grid is then allocated based on profit, with minimum profit thresholds set for intensive agriculture (arable or grassland), extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.  The model iterates prices until demand is satisfied (or cannot be met) and basin water usage for irrigation is not more than is available.This presentation describes the application of the modelling system across future climate change uncertainty space (as given by 60 combinations of downscaled 10’x10’ gridded climate outputs from 5 Global Climate Models, 3 climate sensitivities and 4 emissions scenario) under both baseline and four future socio-economic scenarios to identify those areas of Europe in which the spatial allocation of agricultural landcovers are robust to this uncertainty. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2138
Permanent link to this record
 

 
Author (down) Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M.
Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development
Volume 29 Issue 8 Pages 2378-2389
Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen
Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
Address 2018-10-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1085-3278 ISBN Medium
Area Expedition Conference
Notes XC, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5210
Permanent link to this record