toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Persson, T., Höglind M, Gustavsson AM, Halling M, Jauhianen L, Niemeläinen O, Torvaldsson G, Virkajärvi P. openurl 
  Title Evaluation of the BASGRA timothy model under Nordic conditions Type Conference Article
  Year 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NJF Seminar 455 Nordic Forage Model Applications- predicting forage yield and quality in a variable and changing climate, Forssa, Finland, NJF Report Vol. 9 No. 1 2013, p 4-5., 2013-01-30 to 2013-01-31  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2714  
Permanent link to this record
 

 
Author (down) Persson, T. url  openurl
  Title Determining the variability in optimal sowing date of spring cereals in South Eastern Norway Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-45  
  Keywords  
  Abstract Spring cereals are important agricultural crops in Northern Europe. The short growing season in this region necessitates early sowing. The earliest possible date is often determined by the soil water content, which usually decreases during and after snowmelt at rates varying with the weather and the soil characteristics. Tillage and sowing operations on soils with too high a water content can lead to soil compaction, increased soil erosion, and losses of nutrients and soil organic matter. Rainfall intensity also affects crop emergence, through its potentially negative effects on surface capping. The objective of this study was to determine the earliest possible sowing date of spring cereals for representative soil and climate scenarios in southeastern Norway. Criteria were set for pre-sowing tillage operations and sowing, based on the water content in differ soil layers and the incidence of rainfall. To determine the day of the year when these criteria were first met, the soil water content during the spring was simulated with the soil module in DSSAT v4.5. These simulations were performed for contrasting soil types and climate scenarios representing the period 1961-90 and 2046-65 respectively. For each combination of soil and climate, one hundred simulations with individual weather data were performed. The results provide information about the timing and variability of the optimal planting date for the current and projected climate in South Eastern Norway. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2160  
Permanent link to this record
 

 
Author (down) Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. url  doi
openurl 
  Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy) Type Journal Article
  Year 2014 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 499 Issue Pages 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4798  
Permanent link to this record
 

 
Author (down) Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. openurl 
  Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain northern Italy Type Journal Article
  Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 499 Issue Pages 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract • ARMOSA model simulated a maize ideotype with drought adaptation under climate change. • The ideotype needs less water for higher yield compared to current hybrids. • Higher production involves more crop residues that enhance soil C sequestration. • Soil organic C may generally decrease and N leaching will increase in sandy soil. The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030–2060 and 2070–2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha− 1), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245–565 mm y− 1). With respect to the current hybrid, the ideotype will require less irrigation water (− 13%, p < 0.01) and it resulted in significantly higher yield under water stress condition (+ 15%, p < 0.01) and optimal water supply (+ 2%, p < 0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha− 1 will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4633  
Permanent link to this record
 

 
Author (down) Perego, A.; Sanna, M.; Bellocchi, G.; Acutis openurl 
  Title Simulazione di flussi di carbonio da ecosistemi pratensi: applicazione del modello colturale ARMOSA al sito di Laqueuille (Francia) Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords LiveM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference XLIII Congress of the Italian Society for Agronomy, 2014-09-17 to 2014-09-19  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2713  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: