toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Nosalewicz, A. url  openurl
  Title The effect of combination of drought and heat stresses on plant transpiration and photosynthesis Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-41  
  Keywords  
  Abstract Expected increasing intensity and frequency of droughts with climate changes is often accompanied by increased air temperature resulting in decreased stability of crop yields. Owing to the complex nonlinear interactions between a plant and its environment, it is difficult to evaluate the effect of multi-stress on plant functioning.The main aim of presented research was to analyse spring wheat response to combination of two abiotic stresses: drought and heat.The growth chamber  experiment with controlled environment was conducted on spring wheat growing in cylindrical soil columns. Four treatments were compared: control with optimum soil moisture and air temperature (C), heat wave (HW) – as C but with temperature elevated up to 34°C for four days at flowering, drought (D) with soil water content decreasing from initially optimum level to water deficit (pF> 3.4) at flowering, drought and heat wave (DHW) – the combination of two stresses .The results indicated different course of leaf transpiration and photosynthesis rates in analysed treatments in response to soil water content. HW treatment during period of increased temperature were characterised by significantly increased average transpiration as compared to all other treatments. However photosynthesis rate in this treatment were slightly lower than in control plants.  Comparison of D and DHW treatments shows similarities in the trends of transpiration increase with increasing soil moisture with some offset to lower soil moisture in DHW resulting from higher evapotranspiration. Photosynthesis rate showed relatively large variation characterised by steeper increase with increasing soil water content  in D as compared to DHW. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2156  
Permanent link to this record
 

 
Author (down) Nieróbca, A. url  openurl
  Title The regional trends in maize yield in Poland and its prediction according regional GLOBIOM –CAPRI baseline analysis for 2010, 2030 and 2050 Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-40  
  Keywords  
  Abstract The increase of maize production in Polish agriculture is considered as one of the indicators showing temporal climate change impact. The sowing area of grain maize in Poland increased from 152 thousand hectares in 2000 to 614 thousand hectares in 2013. In the same time, the area of maize production for forage in Poland has increased from 162 to 462 thousand hectares. There is observed increase of yield level but the regional differentiation of this trend is also visible. In the paper we discuss the temporal regional trends in maize yield in Poland connected to the limitation factors (soil, climate, fertilisation) and prognosis for further climate change impact using GLOBIOM-CAPRI regional simulations. The data for the analysis of regional trends for maize production level in 16th regions in Poland (NUTS2) were taken from National Statistical Offices Reports. The GLOBIOM-CAPRI regional simulations for baseline analysis 2010, 2030 and 2050 were obtained from MASCUR knowledge-hab evaluation exercises. As a limitation factors for of maize yield we considered the index for suitable soil and climate suitability index for climate developed in Poland and fertilisation. We have identified that observed positive trend in yield level at NUTS2 is correlated with the climate suitability index and level of NPK fertilisation, whilst there is no statistical relations with soil quality index. The GLOBIOM –CAPRI regional simulation for 2030 shows that the maize yield in Poland will further increase and it can be explained by realisation of existing trends. In simulations for the baseline 2050 year there is visible negative trend in yield level in some regions, where even in current climate there is high probability of deficit precipitation (eg. Wielkopolskia region). No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2155  
Permanent link to this record
 

 
Author (down) Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. url  doi
openurl 
  Title Modelling olive trees and grapevines in a changing climate Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 387-401  
  Keywords tree crops; climate change; simulation models; crop yield; vitis-vinifera l.; air co2 enrichment; soil-water content; elevated co2; mediterranean basin; cropping systems; growth; yield; carbon; simulation  
  Abstract The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4691  
Permanent link to this record
 

 
Author (down) Moraru, P.I.; Rusu, T.; Guș, P.; Bogdan, I.; Pop, A.I. url  openurl
  Title The role of minimum tillage in protecting environmental resources of the Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages 127-135  
  Keywords minimum tillage; soil conservation; crop production; winter-wheat; systems; maize; conservation; temperature; yield; l.  
  Abstract Conservative tillage systems tested in the hilly area of the Transylvanian Plain (Romania), confirms the possibility of improving the biological, physical, chemical and technologizcal properties of the soil. Conservative components include minimum tillage systems and surface incorporation of crop residues. The minimum tillage soil systems with paraplow, chisel or rotary harrow are polyvalent alternatives for basic preparation, germination bed preparation and sowing, for fields and crops with moderate loose requirements being optimized technologies for: soil natural fertility activation and rationalization, reduction of erosion, increasing the accumulation capacity for water and realization of sowing in the optimal period. The minimum tillage systems ensure an adequate aerial-hydrical regime for the biological activity intensity and for the nutrients solubility equilibrium. The vegetal material remaining at the soil surface or superficially incorporated has its contribution to intensifying the biological activity, being an important resource of organic matter. Humus content increases by 0.41%. The minimum tillage systems rebuild the soil structure (hydrostable macroagregate content increases up to 2.2% to 5.2%), improving the global drainage of soil which allows a rapid infiltration of water in soil. Water reserve, accumulated in the 0-50 cm depth is with 1-32 m(3) ha(-1) higher in the minimum tillage variants. The result is a more productive soil, better protected against wind and water erosion and needing less fuel for preparing the germination bed.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4795  
Permanent link to this record
 

 
Author (down) Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: