toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Dietrich, J.P.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
  Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 263 Issue Pages 233-243  
  Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern  
  Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4488  
Permanent link to this record
 

 
Author (down) Camacho, C.; Pérez-Barahona, A. url  doi
openurl 
  Title Land use dynamics and the environment Type Journal Article
  Year 2015 Publication Journal of Economic Dynamics and Control Abbreviated Journal Journal of Economic Dynamics and Control  
  Volume 52 Issue Pages 96-118  
  Keywords land use; spatial dynamics; pollution; climate-change; air-pollution; agriculture; instability; allocation; principle; pattern; quality; health; impact  
  Abstract This paper builds a benchmark framework to study optimal land use, encompassing land use activities and environmental degradation. We focus on the spatial externalities of land use as drivers of spatial patterns: land is immobile by nature, but local actions affect the whole space since pollution flows across locations resulting in both local and global damages. We prove that the decision maker problem has a solution, and characterize the corresponding social optimum trajectories by means of the Pontryagin conditions. We also show that the existence and uniqueness of time-invariant solutions are not in general guaranteed. Finally, a global dynamic algorithm is proposed in order to illustrate the spatial-dynamic richness of the model. We find that our simple set-up already reproduces a great variety of spatial patterns related to the interaction between land use activities and the environment. In particular, abatement technology turns out to play a central role as pollution stabilizer, allowing the economy to reach a time-invariant equilibrium that can be spatially heterogeneous. (C) 2014 Elsevier B.V. All rights reserved.  
  Address 2015-10-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1889 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4698  
Permanent link to this record
 

 
Author (down) Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. url  doi
openurl 
  Title Multifractal analysis of meteorological time series to assess climate impacts Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 39-52  
  Keywords multifractal analysis; time series; agro-meteorological parameters; detrended fluctuation analysis; daily temperature records; catalonia ne spain; fractal analysis; river-basin; precipitation; variability; patterns; trends; china  
  Abstract Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4666  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: