|   | 
Details
   web
Records
Author (down) Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; Sonnenborg, T.O.; Trolle, D.; Willems, P.; Christensen, J.H.
Title A framework for testing the ability of models to project climate change and its impacts Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 122 Issue 1-2 Pages 271-282
Keywords simulation-models; shallow lakes; predictions; calibration; ensembles; terminology; uncertainty; temperature; adaptation; validation
Abstract Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 1573-1480 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4688
Permanent link to this record
 

 
Author (down) Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change
Volume 18 Issue 3 Pages 337-359
Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge
Abstract We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1381-2386 1573-1596 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4613
Permanent link to this record
 

 
Author (down) Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T.
Title Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 144 Issue Pages 65-76
Keywords Farm management; Dynamic optimization; Crop rotation; Risk aversion; Climate change; Prices; climate-change; sequester carbon; changing climate; food security; challenge; Finland; ensembles; systems; europe; tool
Abstract Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4719
Permanent link to this record
 

 
Author (down) Lehtonen, H.
Title Evaluating adaptation and the production development of Finnish agriculture in climate and global change Type Journal Article
Year 2015 Publication Agricultural and Food Science Abbreviated Journal Agricultural and Food Science
Volume 24 Issue 3 Pages 219-234
Keywords agricultural sector modelling; economic adjustment; global prices; climate change; finnish agriculture; crop production; land-use; challenge; ensembles; Finland; Europe; policy
Abstract Agricultural product prices and policies influence the development of crop yields under climate change through farm level management decisions. On this basis, five main scenarios were specified for agricultural commodity prices and crop yields. An economic agricultural sector model was used in order to assess the impacts of the scenarios on production, land use and farm income in Finland. The results suggest that falling crop yields, if realized due to low prices and restrictive policies, will result in decreasing crop and livestock production and increasing nutrient surplus. Slowly increasing crop yields could stabilise production and increase farm income. Significantly higher crop prices and yields are required, however, for any marked increase in production in Finland. Cereals production would increase relatively more than livestock production, if there were high prices for agricultural products. This is explained by abundant land resources, a high opportunity cost of labour and policies maintaining current dairy and beef production.
Address 2016-07-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1459-6067 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4750
Permanent link to this record
 

 
Author (down) Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 3 Pages 255-272
Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe
Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 1573-1618 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4621
Permanent link to this record