|   | 
Details
   web
Records
Author (up) Kässi, P.; Niskanen, O.; Känkänen, H.
Title Farm level approach to manage grass yield variation in changing climate in Jokioinen and St. Petersburg Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages Sp3-11
Keywords
Abstract Cattle’s feeding is based on grass silage in Northern Europe, but grass growth is highly dependent on weather conditions. In farms decision making, grass area is usually determined by the variation of yield. To be adequate in every situation, the lowest expected yield level determines the cultivated area. Other way to manage the grass yield risk is to increase silage storage capacity over annual consumption. Variation of grass yield in climate data from years 1961-1990 was compared with 15 different climate scenario models simulating years 2046-2065. A model was developed for evaluating the inadequacy risk in terms of cultivated area and storing capacity. The cost of risk is presented and discussed.In northern Europe a typical farm has storage for roughage consumption of almost one year. In addition, there can be a buffer storage. The  extra storage is to be used before and during the harvest season. New harvest will be fed to animals only after the buffer empty. Shortage in the buffer storage is possible to be filled, when the yield exceeds the target level. For risk management, two alternative mechanisms are given: forage buffer and possibility to alter the field area.According to our results, there are no significant adverse effects in the cost of risk and implied farm profitability due to climate change. Selecting the risk management scenario of 30 % grass yield risk turned out to be the least cost solution. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2228
Permanent link to this record
 

 
Author (up) Kässi, P.; Niskanen, O.; Känkänen, H.
Title Farm level approach to manage grass yield variation in changing climate in Jokioinen and St. Petersburg Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Cattle’s feeding is based on grass silage in Northern Europe, but grass growth is highly dependent on weather conditions. In farms decision making, grass area is usually determined by the variation of yield. To be adequate in every situation, the lowest expected yield level determines the cultivated area. Other way to manage the grass yield risk is to increase silage storage capacity over annual consumption. Variation of grass yield in climate data from years 1961-1990 was compared with 15 different climate scenario models simulating years 2046-2065. A model was developed for evaluating the inadequacy risk in terms of cultivated area and storing capacity. The cost of risk is presented and discussed. In northern Europe a typical farm has storage for roughage consumption of almost one year. In addition, there can be a buffer storage. The  extra storage is to be used before and during the harvest season. New harvest will be fed to animals only after the buffer empty. Shortage in the buffer storage is possible to be filled, when the yield exceeds the target level. For risk management, two alternative mechanisms are given: forage buffer and possibility to alter the field area. According to our results, there are no significant adverse effects in the cost of risk and implied farm profitability due to climate change. Selecting the risk management scenario of 30 % grass yield risk turned out to be the least cost solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5080
Permanent link to this record
 

 
Author (up) Katajajuuri, J.-M.; Pulkkinen, H.; Hietala, S.; Järvenranta, K.; Virkajärvi, P.; Nousiainen, J.I.; Huuskonen, A.
Title A holistic, dynamic model to quantify and mitigate the environmental impacts of cattle farming Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 35-36
Keywords GHG mitigation; LCA; livestock; dynamic farm model
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4680
Permanent link to this record
 

 
Author (up) Kauer, K.; Tein, B.; Loit, E.
Title The long-term trends in soil carbon stock and crop productivity depending on management in Estonia Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The dynamics of soil organic carbon (SOC) content and crop productivity were studied on three still continuing field experiments situated at the experimental station of the Estonian University of Life Sciences in Tartu, Estonia. The first trial was established in 1964. The effect of mineral fertilizers and farmyard manure applied to barley and sward with different species composition on soil organic carbon content was studied. The second trial with 3-crop rotation (potato – spring wheat – spring barley) was established in 1989. Experimental factors were organic (without amendment, solid cattle manure and alternative organic fertilisers) and mineral fertilisers (0, 40, 80, 120 and 160 kg N ha-1). The third field experiment with 5-crop rotation experiment was established in 2008. Five different crops were following each other – barley undersown with red clover, red clover, winter wheat, pea and potato. Experimental factors were organic (catch crops as green manures, catch crops as green manures combined with composted cattle manure) and conventional farming systems. The conventional farming systems differed in the amounts of mineral fertilizers used: 0, 50, 100 and 150 kg N ha-1. The first goal of this research was to quantify plant C inputs to the soil in Estonian arable lands and the net primary production using crop-specific allometric relationships. Secondly, the impact of the different management scenarios on the changes in soil C stock was evaluated using plant C input data. The preliminary results of these data analysis will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5133
Permanent link to this record
 

 
Author (up) Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.
Title Modeling Greenhouse Gas Emissions from Enteric Fermentation Type Book Chapter
Year 2016 Publication Advances in Agricultural Systems Abbreviated Journal
Volume 6 Issue Pages 173-196
Keywords
Abstract Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and limitations of mathematical models used to estimate enteric CH4 emissions from livestock production. Models used in GHG quantification can be broadly classified into either empirical or mechanistic models. Empirical models might be easier to use because they require fewer input variables compared with mechanistic models. However, their applicability in assessing mitigation options such as dietary manipulation may be limited. The major driving variables identified for both types of models include feed intake, lipid and nonstructural carbohydrate content of the feed, and animal variables. Knowledge gaps identified in empirical modeling were that some of the assumptions might not be valid because of geographical location, health status of animals, genetic differences, or production type. In mechanistic modeling, errors related to estimating feed intake, stoichiometry of volatile fatty acid (VFA) production, and acidity of rumen contents are limitations that need further investigation. Model prediction uncertainty was also investigated, and, depending on the intensity and source of the prediction uncertainty, the mathematical model may inaccurately predict the observed values with more or less variability. In conclusion, although there are quantification tools available, global collaboration is required to come to a consensus on quantification protocols. This can be achieved through developing various types of models specific to region, animal, and production type using large global datasets developed through international collaboration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Kebreab, E.
Language Summary Language Original Title
Series Editor Series Title Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation Abbreviated Series Title
Series Volume Advances in Agricultural Systems (6) Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LiveM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5032
Permanent link to this record