|   | 
Details
   web
Records
Author (down) Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P.
Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 154 Issue 7 Pages 1218-1240
Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management
Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4713
Permanent link to this record
 

 
Author (down) Salamon, P.; Banse, M.; Köchy, M.
Title MACSUR: Modelling European Agriculture with Climate Change for Food Security Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords Hub
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 23rd World Outlook Conference, Seville, Spain, 2014-05-12 to 2014-05-13
Notes Approved no
Call Number MA @ admin @ Serial 2782
Permanent link to this record
 

 
Author (down) Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A.
Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
Year 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 288 Issue Pages 103-111
Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield
Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4806
Permanent link to this record
 

 
Author (down) Saetnan, E.R.; Veneman, J.B.
Title MitiGate: an On-line Meta-Analysis Database of Mitigation Strategies for Enteric Methane Emissions Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The animal science sector has seen a proliferation of potential mitigation strategies, aimed at tackling emissions from enteric fermentation in ruminant livestock production. By bringing together data from studies on the many mitigation options available through a structured meta-analytical approach, it is possible to evaluate the overall mitigation potential for these broad strategies as well as exploring the many factors influencing the potential of CH4 mitigation strategies. Such quantification of the different mitigation strategies will allow for better estimation of mitigation potential on different levels (animal, farm and sector scale) in modelling efforts. Also quantification is important to determine the strategies that show the best potential in lowering methane emissions and hence can be instrumental in policy recommendations. A database has been established through an initial extensive structured search of published literature on the topic. For each relevant paper identified, a range of meta-data have been extracted including information on the study design, mitigation strategy, animal husbandry, diet and methane emissions. By creating a database with multiple levels of moderator coding, we have provided a flexible platform for future meta-analyses at many levels of aggregation. Studies can then in future be aggregated at the level most appropriate for specific modelling or policy recommendations. This comprehensive database is being made available on-line through a user-friendly web interface. The web-site provides a facility for open access to the database, as well as future updates of the database as more research is published on the topic.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5103
Permanent link to this record
 

 
Author (down) Saetnan, E.R.; Kipling, R.P.
Title Evaluating a European knowledge hub on climate change in agriculture: Are we building a better connected community Type Journal Article
Year 2016 Publication Scientometrics Abbreviated Journal Scientometrics
Volume 109 Issue 2 Pages 1057-1074
Keywords Agriculture; Climate change; Interdisciplinary collaboration; Co-authorship; networks; EU research policy; Collaborative funding initiatives; Knowledge hub
Abstract In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0138-9130 1588-2861 ISBN Medium
Area LiveM Expedition Conference
Notes LiveM; wos; ft=macsur; macsur-text; wsnotyet Approved no
Call Number MA @ admin @ Serial 4760
Permanent link to this record