|   | 
Details
   web
Records
Author (up) Özkan, S.; Ahmadi, B.V.; Bonesmo, H.S.; Østerås, O.; Stott, A.; Harstad, O.M.
Title Impact of animal health on greenhouse gas emissions in Norwegian dairying Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Livestock Modelling and Research Colloquium, Bilbao, Spain, 2014-10-14 to 2014-10-16
Notes Approved no
Call Number MA @ admin @ Serial 2694
Permanent link to this record
 

 
Author (up) Özkan, S.; Ahmadi, B.V.; Bonesmo, H.S.; Østerås, O.; Stott, A.; Harstad, O.M.
Title Environmental impacts and economics of high somatic cell count in Norwegian dairy herds Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NJF seminar 476: Economics of Animal Health and Welfare, 2014-10-02 to 2014-10-03
Notes Approved no
Call Number MA @ admin @ Serial 2692
Permanent link to this record
 

 
Author (up) Özkan, Ṣ.; Bonesmo, H.; Østerås, O.; Harstad, O.M.
Title Effect of Increased Somatic Cell Count and Replacement Rate on Greenhouse Gas Emissions in Norwegian Dairy Herds Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Dairy sector contributes around 4% of global greenhouse gas (GHG) emissions, of which 2/3 and 1/3 are attributed to milk and meat production, respectively. The main GHGs released from dairy farms are methane, nitrous oxide and carbon dioxide. The increased trend in emissions has stimulated research evaluating alternative mitigation options. Much of the work to date has focused on animal breeding, dietary factors and rumen manipulation. There have been little studies assessing the impact of secondary factors such as animal health on emissions at farm level. Production losses associated with udder health are significant. Somatic cell count (SCC) is an indicator on udder health. In Norway, around 45, 60 and 70% of cows in a dairy herd at first, second and third lactation are expected to have SCC of 50,000 cells/ml and above. Another indirect factor is replacement rate. Increasing the replacement rate due to health disorders, infertility and reduced milk yield is likely to increase the total farm emissions if the milking heifer replacements are kept in the herd. In this study, the impact of elevated SCC (200,000 cells/ml and above) and replacement rate on farm GHG emissions was evaluated. HolosNor, a farm scale model adapting IPCC methodology was used to estimate net farm GHG emissions. Preliminary results indicate an increasing trend in emissions (per kg milk and meat) as the SCC increases. Results suggest that animal health should be considered as an indirect mitigation strategy; however, further studies are required to enable comparisons of different farming systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5075
Permanent link to this record
 

 
Author (up) Özkan, S.; Bonesmo, H.S.; Harstad, O.M.
Title Greenhouse gas emissions and mitigation potential of Norwegian dairy sector Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords LiveM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Scaling in global, regional and farm models, 2014-09-24 to 2014-09-24
Notes Approved no
Call Number MA @ admin @ Serial 2693
Permanent link to this record
 

 
Author (up) Özkan, Ş.; Hill, J.; Cullen, B.
Title Effect of climate variability on pasture-based dairy feeding systems in south-east Australia Type Journal Article
Year 2014 Publication Animal Production Science Abbreviated Journal Animal Production Science
Volume 55 Issue 9 Pages 1106-1116
Keywords carry-forward surplus; conserved-hay; probability; winter deficit; grown forage consumption; new-zealand; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; crop; systems; cows; management; profit
Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in climate affects plant growth, leading to uncertainty in dryland pasture supply. This paper models the impact of climate variability on pasture production and examines the potential of two pasture-based dairy feeding systems: (1) to experience winter deficits; (2) to carry forward the conserved pasture surpluses as silage for future use; and (3) to conserve pasture surpluses as hay. The two dairy feeding systems examined were a traditional perennial ryegrass-based feeding system (ryegrass max. – RM) and a system that incorporated double cropping into the perennial ryegrass pasture base (complementary forage – CF). The conditional probability of the RM and CF systems to generate pasture deficits in winter were 94% and 96%, respectively. Both systems could carry forward the surplus silage into the following lactation almost once in every 4-5 years with the RM system performing slightly better than the CF system. The proportions of the grain-based concentrates fed in the two systems were 25% and 27% for the RM and CF systems, respectively. This study suggests that double-cropping systems have the potential to provide high-quality feed to support the feed gaps when pasture is not available due to increased variability in climatic conditions.
Address 2015-09-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1836-5787 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4689
Permanent link to this record