toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Persson, T.; Kværnø, S.; Höglind, M. url  doi
openurl 
  Title Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 71-86  
  Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth  
  Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4674  
Permanent link to this record
 

 
Author (up) Piayda, A. url  openurl
  Title The FACCE-ERA-Net Plus project “Climate smart Agriculture on Organic Soils” (CAOS) Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-44  
  Keywords  
  Abstract The FACCE-ERA-Net Plus project “Climate smart Agriculture on Organic Soils” (CAOS) focuses on farmed organic soils, hotspots of vulnerability and GHG emissions in Europe. We propose to use wet organic soils as risk insurance in dry periods on farm/regional level, while water and soil management assures trafficability in wet conditions. Wet management systems abate peat degradation and therefore foster higher infiltration rates and ease subirrigation. Economically, wetness-adapted crops with stable yield quantity/quality for food, feed and bioenergy are needed. Convincing farmers and decision makers of profitable and resilient wet management systems on organic soils under climate change needs proof by on-farm experiments, historical evidence and bi-directional involvement.Overall, we aim to generate knowledge of climate smart agricultural system design on organic soils adapted to regional European conditions. CAOS will provide and distribute evidence that active management with control of groundwater levels, improved trafficability and alternative high productivity crops improves yield stability/quality and climate change resilience while mitigating GHG emissions and improving soil/water quality. We hypothesize that the strong potential for adaptation to increased climatic variability on farmed organic soil will facilitate mitigation of the largest GHG source from agriculture in Central/Northern Europe. At MACSUR conference, we present the project concept and first results. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2159  
Permanent link to this record
 

 
Author (up) Pilbeam, D.J. url  doi
openurl 
  Title Breeding crops for improved mineral nutrition under climate change conditions Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3511-3421  
  Keywords Breeding/*methods; *Climate Change; Crops, Agricultural/*growth & development; Environment; Minerals/*metabolism; *Nutritional Physiological Phenomena; Micronutrient; nitrogen; nutrient availability; nutrient use efficiency; phosphorus; quantitative trait loci (QTLs)  
  Abstract Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431; 0022-0957 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4575  
Permanent link to this record
 

 
Author (up) Pirttioja, N. url  openurl
  Title A crop model ensemble analysis of wheat yield sensitivity to changes in temperature and precipitation across a European transect Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-46  
  Keywords  
  Abstract Impact response surfaces (IRSs) were constructed to depict the sensitivity of modelled spring and winter wheat yields to systematic changes in baseline temperature (between -2°C and +9°C)  and precipitation (-50 to +50%)  as simulated by a 26-member ensemble of process-based crop simulation models. The study was conducted across a latitudinal transect for sites in Finland, Germany and Spain.In spite of large differences in simulated yield responses to both baseline and changed climate between models, sites, crops and years, several common messages emerged. Ensemble average yields decline with warming (3-7% per 1°C) and decreased precipitation (3-9% per 10% decrease), but benefit from increased precipitation (0-8% per 10% increase). Yields are more sensitive to temperature than precipitation changes at the Finnish site while sensitivities are mixed at the other sites. Inter-model variability is highest for baseline climate at the Spanish site but is affected little by changed climate. Model responses diverge most under warming at the Finnish and German sites for winter wheat. The IRS pattern of yield reliability tracks average yield levels.Optimal temperatures for present-day cultivars are below the baseline at the German and Spanish sites suggesting that adoption of cultivars with higher temperature requirements might already be advantageous, and increasingly so at all sites under future warming.The study was conducted in the CropM component of the FACCE-JPI/MACSUR project. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2161  
Permanent link to this record
 

 
Author (up) Pirttioja, N.; Carter, T.R.; & 47 al.; Rötter, R.P. url  openurl
  Title A crop model ensemble analysis of temperature and precipitation effects on wheat yield across a European transect using impact response surfaces Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-C4.4.3  
  Keywords  
  Abstract Impact response surfaces (IRSs) of spring and winter wheat yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect in Europe. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of 1981–2010 baseline weather.In spite of large differences in simulated yield responses to both baseline and changed climate between models, sites, crops and years, several common messages emerged. Ensemble average yields decline with higher temperatures (3–7% per 1°C) and decreased precipitation  (3–9% per 10% decrease), but benefit from increased precipitation (0-8% per 10% increase). Yields are more sensitive to temperature than precipitation changes at the Finnish site while sensitivities are mixed at the German and Spanish sites. Precipitation effects diminish under higher temperature changes. Inter-model variability is highest for baseline climate at the Spanish site, but relatively insensitive to changed climate. Modelled responses diverge most at the Finnish and German sites for winter wheat under temperature change. The IRS pattern of yield reliability tracks average yield levels. Inter-annual yield variability is more sensitive to precipitation than temperature, except at the Spanish site for spring wheat.Optimal temperatures for present-day cultivars are close to the baseline under Finnish conditions but below the baseline at the German and Spanish sites. This suggests that adoption of later maturing cultivars with higher temperature requirements might already be advantageous, and increasingly so under future warming. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2104  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: