|   | 
Details
   web
Records
Author (up) Dell’Unto, D.
Title Modeling the effects of Climate Change on dairy farms: an integration of livestock and economic models Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-16
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2131
Permanent link to this record
 

 
Author (up) Deppermann et al.
Title Food and nutrition security in Europe – a quantification of multi-stakeholder scenarios Type Report
Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 8 Issue Pages SP8-5
Keywords
Abstract Conference presentation PDF
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference LiveM2016: International livestock modelling conference – Modelling grassland-livestock systems under climate change
Notes Approved no
Call Number MA @ admin @ Serial 4850
Permanent link to this record
 

 
Author (up) Destain, M.-F.
Title Filtering methods for predicting and modelling wheat yield in the context of climate change Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this paper, an Improved Particle Filtering (IPF) based on minimizing Kullback-Leibler divergence will be proposed for biomass prediction of a wheat crop model in the context of climate change including heat and drought stresses.In a first stage, the performances of the proposed technique will be compared with those of the extended Kalman filter (EKF), unscented Kalman filter (UKF), Particle filter (PF). In a second stage, the state estimation techniques EKF, UKF, PF and IPF will be used for updating prediction of the model in order to predict winter wheat biomass, in specific field conditions, during several contrasted weather conditions. In a third stage, the effects of practical challenges on the performances of the state estimation algorithms will be assessed. Such practical challenges include the effect of measurement noise on the estimation performances and the measurement frequency of state variables.The first results show that the UKF provides a higher accuracy than the EKF due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated states through lineralization of the nonlinear process model. The results also show that the IPF provides a significant improvement over PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of the sampling distribution, which also accounts for the observed data. For all techniques, the practical challenges affect the estimation accuracy as well as the convergence of the estimated states and parameters. However, the IPF can still provide both convergence as well as accuracy over other estimation methods. These advantages are precious in presence of high climate stresses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5083
Permanent link to this record
 

 
Author (up) Dibari, C.; Argenti, G.; Catolfi, F.; Moriondo, M.; Staglianò, N.; Bindi, M.
Title Climate change impacts on natural pasturelands of Italian Apennines Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract As well as the entire Mediterranean area, the Italian Apennines have been affected by increasing temperatures, rainfall extreme events and decreases in annual precipitation due to climate change. Moreover, permanent grasslands, species-diverse ecosystems characterizing the marginal areas of the Apennines landscape, are acknowledged as very sensitive and vulnerable to climate variation. Building on these premises, statistical classification models coupled with data integration by GIS techniques, were used to territorially assess future climate change impacts on pastoral communities on the Italian Apennines chain. Specifically, a machine learning approach (Random Forest – RF), firstly calibrated  for the present period and then applied to future conditions, as projected by HadCM3 General Circulation Model (GCM), was used to simulate potential expansion/reduction and/or altitudinal shifts of the Apennine pasturelands in two time slices, centred on 2050 and 2080, under A2 and B2 SRES scenarios. RF classification model proved to be robust and very efficient to predict lands suited to pastures with regards to present period (classification error: 12%). Furthermore, according to RF simulations, relevant reductions (46 and 34%) of areas potentially suitable for pastoral resource are expected under A2 at the middle and end of the century, respectively, as depicted by the GCM and SRES scenarios. Moreover, progressive upwards shifts are predicted by the model under both SRES scenarios. These reductions will likely interest the central area of the chain threatening the typical and unique herbaceous biodiversity characterizing the Apennine pasturelands.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5062
Permanent link to this record
 

 
Author (up) Dietrich, J.P.; Popp, A.; Lotze-Campen, H.
Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 263 Issue Pages 233-243
Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern
Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4488
Permanent link to this record