toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lehtonen, H.S.; Irz, X. url  openurl
  Title Impacts of reducing red meat consumption on agricultural production in Finland Type Journal Article
  Year 2013 Publication Agriculture and Food Science Abbreviated Journal Agriculture and Food Science  
  Volume 22 Issue 3 Pages 356-370  
  Keywords agricultural sector modelling; food demand; greenhouse gas mitigation; agricultural policy; agricultural economics  
  Abstract This paper summarises the simulated effects on Finnish agrcultural production and trade of a 20% decrease in Finnish demand for red meat (beef, pork, lamb). According to our results, reduced red meat consumption would be offset by increased consumption of poultry meat, eggs, dairy products and fish, as well as small increases in consumption of fruits and vegetables, peas, nuts, cereal products and sweets. By including the derived demand changes in an agricultural sector model, we show that livestock production in Finland, incentivised by national production-linked payments for milk and bovine animals, would decrease by much less than 20% due to the complex nature of agricultural production and trade. Overall, assuming unchanged consumer preferences and agricultural policy, a 20% reduction in red meat consumption is not likely to lead to a substantial decrease in livestock production or changed land use, or greenhouse gas emissions, from Finnish agriculture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1795-1895 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4607  
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Lampe, M.; Kyle, P.; Fujimori, S.; Havlik, P.; van Meijl, H.; Hasegawa, T.; Popp, A.; Schmitz, C.; Tabeau, A.; Valin, H.; Willenbockel, D.; Wise, M. url  doi
openurl 
  Title Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue 1 Pages 103-116  
  Keywords energy demand; agricultural markets; general equilibrium modeling; partial equilibrium modeling; model comparison; greenhouse-gas emissions; land-use; energy; productivity; scenarios; policies; capture; storage; system  
  Abstract Integrated Assessment studies have shown that meeting ambitious greenhouse gas mitigation targets will require substantial amounts of bioenergy as part of the future energy mix. In the course of the Agricultural Model Intercomparison and Improvement Project (AgMIP), five global agro-economic models were used to analyze a future scenario with global demand for ligno-cellulosic bioenergy rising to about 100 ExaJoule in 2050. From this exercise a tentative conclusion can be drawn that ambitious climate change mitigation need not drive up global food prices much, if the extra land required for bioenergy production is accessible or if the feedstock, for example, from forests, does not directly compete for agricultural land. Agricultural price effects across models by the year 2050 from high bioenergy demand in an ambitious mitigation scenario appear to be much smaller (+5% average across models) than from direct climate impacts on crop yields in a high-emission scenario (+25% average across models). However, potential future scarcities of water and nutrients, policy-induced restrictions on agricultural land expansion, as well as potential welfare losses have not been specifically looked at in this exercise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4532  
Permanent link to this record
 

 
Author Ma, S.; Lardy, R.; Graux, A.-I.; Ben Touhami, H.; Klumpp, K.; Martin, R.; Bellocchi, G. url  doi
openurl 
  Title Regional-scale analysis of carbon and water cycles on managed grassland systems Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 356-371  
  Keywords carbon flux; eddy flux measurements; model evaluation; pasture simulation model (pasim); water balance; pasture simulation-model; nitrous-oxide emissions; primary productivity npp; comparing global-models; net ecosystem exchange; greenhouse-gas balance; climate-change; agricultural systems; co2 exchange; european grasslands  
  Abstract Predicting regional and global carbon (C) and water dynamics on grasslands has become of major interest, as grasslands are one of the most widespread vegetation types worldwide, providing a number of ecosystem services (such as forage production and C storage). The present study is a contribution to a regional-scale analysis of the C and water cycles on managed grasslands. The mechanistic biogeochemical model PaSim (Pasture Simulation model) was evaluated at 12 grassland sites in Europe. A new parameterization was obtained on a common set of eco-physiological parameters, which represented an improvement of previous parameterization schemes (essentially obtained via calibration at specific sites). We found that C and water fluxes estimated with the parameter set are in good agreement with observations. The model with the new parameters estimated that European grassland are a sink of C with 213 g C m(-2) yr(-1), which is close to the observed net ecosystem exchange (NEE) flux of the studied sites (185 g C m(-2) yr(-1) on average). The estimated yearly average gross primary productivity (GPP) and ecosystem respiration (RECO) for all of the study sites are 1220 and 1006 g C m(-2) yr(-1), respectively, in agreement with observed average GPP (1230 g C m(-2) yr(-1)) and RECO (1046 g C m(-2) yr(-1)). For both variables aggregated on a weekly basis, the root mean square error (RMSE) was similar to 5-16 g C week(-1) across the study sites, while the goodness of fit (R-2) was similar to 0.4-0.9. For evapotranspiration (ET), the average value of simulated ET (415 mmyr(-1)) for all sites and years is close to the average value of the observed ET (451 mm yr(-1)) by flux towers (on a weekly basis, RMSE similar to 2-8 mm week(-1); R-2 = 0.3-0.9). However, further model development is needed to better represent soil water dynamics under dry conditions and soil temperature in winter. A quantification of the uncertainties introduced by spatially generalized parameter values in C and water exchange estimates is also necessary. In addition, some uncertainties in the input management data call for the need to improve the quality of the observational system.  
  Address 2015-10-09  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4695  
Permanent link to this record
 

 
Author Müller, C.; Robertson, R.D. doi  openurl
  Title Projecting future crop productivity for global economic modeling Type Journal Article
  Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue 1 Pages 37-50  
  Keywords climate change; crop modeling; agricultural productivity; land use; greenhouse-gas emissions; soil organic-carbon; sub-saharan africa; climate-change; elevated co2; land-use; system model; wheat yields; maize yields; agriculture  
  Abstract Assessments of climate change impacts on agricultural markets and land-use patterns rely on quantification of climate change impacts on the spatial patterns of land productivity. We supply a set of climate impact scenarios on agricultural land productivity derived from two climate models and two biophysical crop growth models to account for some of the uncertainty inherent in climate and impact models. Aggregation in space and time leads to information losses that can determine climate change impacts on agricultural markets and land-use patterns because often aggregation is across steep gradients from low to high impacts or from increases to decreases. The four climate change impact scenarios supplied here were designed to represent the most significant impacts (high emission scenario only, assumed ineffectiveness of carbon dioxide fertilization on agricultural yields, no adjustments in management) but are consistent with the assumption that changes in agricultural practices are covered in the economic models. Globally, production of individual crops decrease by 10-38% under these climate change scenarios, with large uncertainties in spatial patterns that are determined by both the uncertainty in climate projections and the choice of impact model. This uncertainty in climate impact on crop productivity needs to be considered by economic assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4533  
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K. doi  openurl
  Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 157-169  
  Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling  
  Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language phase 2 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: