toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tao, F.; Roetter, R.P.; Palosuo, T.; Diaz-Ambrona, C.G.H.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Nendel, C.; Cammarano, D.; Hoffmann, H.; Ewert, F.; Dambreville, A.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Ferrise, R.; Bindi, M.; Schulman, A.H. doi  openurl
  Title Designing future barley ideotypes using a crop model ensemble Type Journal Article
  Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 82 Issue Pages 144-162  
  Keywords Water-Use Efficiency; Climate-Change; Nitrogen Dynamics; Systems; Simulation; Wheat Cultivars; Grain Weight; Yield; Growth; Fertilization; Adaptation; Adaptation; Breeding; Climate change; Crop simulation models; Impact; Genotype; Genetic traits  
  Abstract Climate change and its associated higher frequency and severity of adverse weather events require genotypic adaptation. Process-based ecophysiological modelling offers a powerful means to better target and accelerate development of new crop cultivars. Barley (Hordeum vulgare L) is an important crop throughout the world, and a good model for study of the genetics of stress adaptation because many quantitative trait loci and candidate genes for biotic and abiotic stress tolerance have been identified in it. Here, we developed a new approach to design future crop ideotypes using an ensemble of eight barley simulation models (i.e. APSIM, CropSyst, HERMES, MCWLA, MONICA, SIMPLACE, Sirius Quality, and WOFOST), and applied it to design climate-resilient barley ideotypes for Boreal and Mediterranean climatic zones in Europe. The results showed that specific barley genotypes, represented by sets of cultivar parameters in the crop models, could be promising under future climate change conditions, resulting in increased yields and low inter-annual yield variability. In contrast, other genotypes could result in substantial yield declines. The most favorable climate-zone-specific barley ideotypes were further proposed, having combinations of several key genetic traits in terms of phenology, leaf growth, photosynthesis, drought tolerance, and grain formation. For both Boreal and Mediterranean climatic zones, barley ideotypes under future climatic conditions should have a longer reproductive growing period, lower leaf senescence rate, larger radiation use efficiency or maximum assimilation rate, and higher drought tolerance. Such characteristics can produce substantial positive impacts on yields under contrasting conditions. Moreover, barley ideotypes should have a low photoperiod and high vernalization sensitivity for the Boreal climatic zone; for the Mediterranean, in contrast, it should have a low photoperiod and low vernalization sensitivity. The drought-tolerance trait is more beneficial for the Mediterranean than for the Boreal climatic zone. Our study demonstrates a sound approach to design future barley ideotypes based on an ensemble of well-tested, diverse crop models and on integration of knowledge from multiple disciplines. The robustness of model-aided ideotypes design can be further enhanced by continuously improving crop models and enhancing information exchange between modellers, agro-meteorologists, geneticists, physiologists, and plant breeders. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-01-20  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area (up) Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4935  
Permanent link to this record
 

 
Author Lotze-Campen, H.; von Witzke, H.; Noleppa, S.; Schwarz, G. url  doi
openurl 
  Title Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 136 Issue Pages 79-84  
  Keywords Plant breeding; CO2 emissions; Cost–benefit analysis; Social rate of return; Agricultural research policy  
  Abstract Highlights • We analyze the economic effects of plant breeding research in Germany. • Effects of reduced CO2 emissions due to productivity increases are being quantified. • Expansion of global agricultural area has been reduced by 1–1.5 million ha. • CO2 emissions have been reduced by 160–235 million tons. • German plant breeding research has an economic value of 10.8–15.6 billion EUR. Abstract We analyze the economic effects of plant breeding research in Germany. In addition to market effects, for the first time also effects of reduced CO2 emissions due to productivity increases are being quantified. The analysis shows that investments in German plant breeding research in the period 1991–2010 have reduced the global expansion of agricultural area by 1–1.5 million hectares. This has led to reduced CO2 emissions of 160–235 million tons. The economic value generated by plant breeding research, through increased production and reduced greenhouse gas emissions, is estimated at 10.8–15.6 billion EUR in the same period. This can be translated into a social rate of return on research investment in the range of 40–80% per year. Projections for the period 2011–2030 generate a return rate in the range of 65–140% per year. Investments into plant breeding research in Germany are highly profitable from a societal point of view. At the same time, our results show significant under-investments in agricultural research in Germany. These results provide a good justification for policy-makers to reverse funding cuts for public agricultural research over the last decades and to improve institutional conditions for private research, e.g. through better protection of intellectual property rights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area (up) Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4999  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: