|   | 
Details
   web
Records
Author Semenov, M.A.; Mitchell, R.A.C.; Whitmore, A.P.; Hawkesford, M.J.; Parry, M.A.J.; Shewry, P.R.
Title Shortcomings in wheat yield predictions Type Journal Article
Year 2012 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 2 Issue 6 Pages 380-382
Keywords winter-wheat; elevated CO2; temperature; growth
Abstract Predictions of a 40–140% increase in wheat yield by 2050, reported in the UK Climate Change Risk Assessment, are based on a simplistic approach that ignores key factors affecting yields and hence are seriously misleading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Commentary
Area Expedition Conference
Notes CropM, ftnotmacsur Approved (up) no
Call Number MA @ admin @ Serial 4504
Permanent link to this record
 

 
Author Semenov, M.A.; Stratonovitch, P.
Title Designing high-yielding wheat ideotypes for a changing climate Type Journal Article
Year 2013 Publication Food and Energy Security Abbreviated Journal Food Energy Secur.
Volume 2 Issue 3 Pages 185-196
Keywords Climate change impacts; crop modeling; LARS-WG; Sirius; wheat
Abstract Global warming is characterized by shifts in weather patterns and increases in climatic variability and extreme events. New wheat cultivars will be required for a rapidly changing environment, putting severe pressure on breeders who must select for climate conditions which can only be predicted with a great degree of uncertainty. To assist breeders to identify key wheat traits for improvements under climate change, wheat ideotypes can be designed and tested in silico using a wheat simulation model for a wide range of future climate scenarios predicted by global climate models. A wheat ideotype is represented by a set of cultivar parameters in a model, which could be optimized for best wheat performance under projected climate change. As an example, high-yielding wheat ideotypes were designed at two contrasting European sites for the 2050 (A1B) climate scenario. Simulations showed that wheat yield potential can be substantially increased for new ideotypes compared with current wheat varieties under climate change. The main factors contributing to yield increase were improvement in light conversion efficiency, extended duration of grain filling resulting in a higher harvest index, and optimal phenology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2048-3694 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved (up) no
Call Number MA @ admin @ Serial 4505
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.
Volume 27 Issue 10 Pages 3607-3622
Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis
Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-4741 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved (up) no
Call Number MA @ admin @ Serial 4487
Permanent link to this record
 

 
Author Calanca, P.; Semenov, M.A.
Title Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database Type Journal Article
Year 2013 Publication Theoretical and Applied Climatology Abbreviated Journal Theor. Appl. Climatol.
Volume 113 Issue 3-4 Pages 445-455
Keywords stochastic weather generators; regional climate; lars-wg; daily; precipitation; models; simulation; europe; temperature; variability; heatwaves
Abstract We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0177-798x 1434-4483 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved (up) no
Call Number MA @ admin @ Serial 4484
Permanent link to this record
 

 
Author Francone, C.; Katul, G.G.; Cassardo, C.; Richiardone, R.
Title Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards Type Journal Article
Year 2012 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 162-163 Issue Pages 98-107
Keywords coherent motion; cumulant expansions; heat and momentum transfer; sloping terrain; vineyards; planar fit method; boundary-layers; reynolds stress; dense canopies; plant canopies; flow; fluxes; forest; fields; hills
Abstract In boundary layer flows, it is now recognized that the net momentum and mass exchange rates are dominated by the statistical properties of ejecting and sweeping motion often linked to the presence of coherent turbulent structures. Over vineyards, three main factors impact the transport properties of such coherent motion: presence of sloping terrain, variations in leaf area index (LAI) during the growing season, and thermal stratification. The effect of these factors on momentum and heat transport is explored for three vineyard sites situated on different slopes. All three sites experience similar seasonal variation in LAI and mean wind conditions. The analysis is carried out using a conventional quadrant analysis technique and is tested against two models approximating the joint probability density function (JPDF) of the flow variables. It is demonstrated that a Gaussian JPDF explains much of the updraft and downdraft statistical contributions to heat and momentum transport efficiencies for all three sites. An incomplete or truncated third-order cumulant expansion method (ICEM) of the JPDF that retains only the mixed moments and ignores the skewness contributions describes well all the key properties of ejections and sweeps for all slopes, LAI, and stability classes. The implication of these findings for diagnosing potential failures of gradient-diffusion theory over complex terrain is discussed. Because only lower order moments are needed to describe the main characteristics of the JPDF, the use of the Moving Equilibrium Hypothesis (MEH) to predict these moments from the locally measured sensible heat flux and friction velocity is explored. Provided the planar fit coordinate transformation is applied to the data, the MEH can describe these statistical moments at all three sites regardless of terrain slopes and LAI values. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved (up) no
Call Number MA @ admin @ Serial 4471
Permanent link to this record