|   | 
Details
   web
Records
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A.
Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 122 Issue Pages 12-24
Keywords
Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5002
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.
Title The impact of high-end climate change on agricultural welfare Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 2 Issue 8 Pages e1501452
Keywords ftnotmacsur
Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5003
Permanent link to this record
 

 
Author Robinson, S.; van Meijl, H.; Willenbockel, D.; Valin, H.; Fujimori, S.; Masui, T.; Sands, R.; Wise, M.; Calvin, K.; Havlik, P.; Mason d’Croz, D.; Tabeau, A.; Kavallari, A.; Schmitz, C.; Dietrich, J.P.; von Lampe, M.
Title Comparing supply-side specifications in models of global agriculture and the food system Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 21-35
Keywords global agricultural models; global food system scenario analysis; general equilibrium; partial equilibrium; growth; trade
Abstract This article compares the theoretical and functional specification of production in partial equilibrium (PE) and computable general equilibrium (CGE) models of the global agricultural and food system included in the AgMIP model comparison study. The two model families differ in their scopepartial versus economy-wideand in how they represent technology and the behavior of supply and demand in markets. The CGE models are deep structural models in that they explicitly solve the maximization problem of consumers and producers, assuming utility maximization and profit maximization with production/cost functions that include all factor inputs. The PE models divide into two groups on the supply side: (1) shallow structural models, which essentially specify area/yield supply functions with no explicit maximization behavior, and (2) deep structural models that provide a detailed activity-analysis specification of technology and explicit optimizing behavior by producers. While the models vary in their specifications of technology, both within and between the PE and CGE families, we consider two stylized theoretical models to compare the behavior of crop yields and supply functions in CGE models with their behavior in shallow structural PE models. We find that the theoretical responsiveness of supply to changes in prices can be similar, depending on parameter choices that define the behavior of implicit supply functions over the domain of applicability defined by the common scenarios used in the AgMIP comparisons. In practice, however, the applied models are more complex and differ in their empirical sensitivity to variations in specificationcomparability of results given parameter choices is an empirical question. To illustrate the issues, sensitivity analysis is done with one global CGE model, MAGNET, to indicate how the results vary with different specification of technical change, and how they compare with the results from PE models.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4735
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.
Title Global valuation of agricultural, virtual blue water trade measured on a local scale Type Conference Article
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference paper presented at the 10th Annual meeting of the International Water Resource Economics Consortium, Stockholm, Sweden, 2012-08-27 to 2012-08-28
Notes Approved no
Call Number MA @ admin @ Serial 2323
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S.
Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 10 Issue 9 Pages 094021
Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon
Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4718
Permanent link to this record