|   | 
Details
   web
Records
Author Paas, W.; Kanellopoulos, A.; van de Ven, G.; Reidsma, P.
Title Integrated impact assessment of climate and socio-economic change on dairy farms in a watershed in the Netherlands Type Journal Article
Year 2016 Publication NJAS – Wageningen Journal of Life Sciences Abbreviated Journal NJAS – Wageningen Journal of Life Sciences
Volume Issue Pages
Keywords climate change; bio-economic model; explorations; land-use; 2050-scenario
Abstract Climate and socio-economic change will affect the land use and the economic viability of Dutch dairy farms. Explorations of future scenarios, which include different drivers and impacts, are needed to perform ex-ante policy assessment. This study uses a bio-economic farm model to assess impacts of climate and socio-economic change on dairy farms in a sandy area in the Netherlands. Farm data from the Farm Accountancy Data Network provided information on the current production levels and available farm resources. First, the farm plans of individual farms were optimized in the current situation to benchmark farms and assess the current scope for improvement. Secondly, simulations for two scenarios were included: a Global Economy with 2 °C global temperature rise (GE/W+) and a Regional Community with 1 °C global temperature rise (RC/G). The impacts of climate change, extreme events, juridical change (including abolishment of milk quota), technological change and price changes were evaluated in separate model runs within the predefined scenarios. We found that farms can increase profit both by intensification and land expansion; the latter especially for medium sized farms (less than 70 cows). Climate change including the effect of increased occurrence of extreme events may negatively affect farm gross margin in the GE/W+ scenario. Lower gross margins are compensated for by the effects of technology and price changes. In contrast with the GE/W+ scenario, climate change has positive impacts on farm profit in RC/G, but less favourable farm input-output price ratios have a negative effect. Technological change is needed to compensate for revenue losses due to higher input prices. In both GE/W+ and RC/G scenarios, dairy farms increase production and the use of artificial fertilizer. Medium sized farms have more options to increase profit than the large farms: they benefit more from the abolishment of the milk quota and better adapt to negative and positive impacts of climate change. While the exact impact of different drivers will always remain uncertain, this study showed that changes in prices, technology and markets have a relatively larger impact than climate change, even when extreme events are taken into account. By using whole farm plans as activities that can be selected, the model is grounded in observations, and it was shown that half of the farms are gross margin maximizers as assumed in the model. The model therefore indicates ‘what could happen if’, and gives insights in drivers and impacts of dairy farming in the region.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1573-5214 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4712
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G.
Title Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics
Volume 30 Issue Pages 356-364
Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france
Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4697
Permanent link to this record
 

 
Author Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M.
Title Modelling olive trees and grapevines in a changing climate Type Journal Article
Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 72 Issue Pages 387-401
Keywords tree crops; climate change; simulation models; crop yield; vitis-vinifera l.; air co2 enrichment; soil-water content; elevated co2; mediterranean basin; cropping systems; growth; yield; carbon; simulation
Abstract The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4691
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E.
Title Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume 46 Issue Pages 75-90
Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water
Abstract Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4675
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F.
Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 220 Issue Pages 101-115
Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil
Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4673
Permanent link to this record