|   | 
Details
   web
Records
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Rising temperatures reduce global wheat production Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 5 Issue 2 Pages 143-147
Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation
Abstract (down) Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4550
Permanent link to this record
 

 
Author Mittenzwei, K.
Title Incorporating uncertainty in a deterministic agricultural sector model Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Climate-induced uncertainty in crop yields is introduced in the Norwegian sector model Jordmod. The model is comprised of a supply module in which profits for more than 300 regional farms are maximized and a market module which maximizes social welfare in the agricultural sector. In the supply module, farmers determine their plant decisions and crop input levels (N-fertilizer) subject to a discrete number of weather outcomes affecting crop yields. After that, a specific weather distribution is chosen determining crop yields. The resulting input-output mix at farm level makes up the supply side of the commodity markets which together with linear demand functions determine equilibrium levels. The procedure is repeated for each discrete weather outcome. Note that plant decisions and crop input levels remain the same for all weather outcomes as farmers face the same uncertainty during all repetitions, but crop yield will vary. Hence, equilibrium prices and quantities will vary as well allowing their representation as stochastic distributions. In a preliminary empirical application, the stochastic results are contrasted with the deterministic results based on the mean values of the weather outcomes. This comparison will shed light on the potential error made by neglecting uncertainty at the farm level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5089
Permanent link to this record
 

 
Author Sinabell, F.
Title Adaptation in Austrian cattle and milk production Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Climate change will pose considerable challenges to Austrian agriculture which will likely be affected by a higher frequency of extreme weather events and more volatile commodity prices. We want to analyse the spatial, economic and social dimension of this threat by exploring expected consequences for the most important agricultural activity in Austria, cattle and dairy farming. We will evaluate a broad bouquet of adaptation measures from both, the perspective of the single farm as well as from the agricultural policy perspective. By aligning scenarios on projections of climate conditions and socio-economic developments with those developed in the EU MACSUR project (www.macsur.eu), the results will be consistent with state of the art analyses on climate change in Europe. By integrating results from a well established life cycle analysis model that will be specified to the Austrian situation we will broaden the spectrum of existing knowledge substantially. The results will allow policy makers to base their decisions on evidence that is not limited to the Austrian situations but includes spillover effects to foreign countries as well. Farmers willbe able to benefit directly from results of this project because stakeholders from the farm sector are part of the analyses from the beginning. An additional benefit of the project is that it is closely integrated to the activities of the international network of researchers working on climate change and food security in Europe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5049
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Zarski, J.
Title Integrated assessment of business crop productivity and profitability for use in food supply forecasting Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages Sp3-7
Keywords
Abstract (down) Climate change suggests long periods without rainfall will occur in the future quite often. Previous approach on dependence crop-yields from size of rain confirms the existence of a statistically significant relation. We built a model describing the amount of precipitation and taking into account periods of drought, using a mixture of gamma distribution and one point-distribution. Parameter estimators were constructed from rainfall data using the method of maximum likelihood. Long series of days or decades of drought allow to determine the probabilities of adverse developments in agriculture as the basis for forecasting crop yields in the future (years 2030, 2050). Forecasted yields can be used for assessment of productivity and profitability of some selected crops in Kujavian-Pomeranian region. Assumptions and parameters of large-scale spatial economic models will be applied to build up relevant solutions. Calculated with this approach output could be useful to expect decrease in agricultural output in the region. It will enable to shape effective agricultural policy to know how to balance food supply and demand through appropriate managing with stored food raw material and/or import/export policies. Used precipitation-yields dependencies method let verify earlier used methodology through comparison of obtained solutions concerning forecasted yields and closed to it uncertainty analysis.This work was co-financed by NCBiR, Contract no. FACCE JPI/04/2012 – P100 PARTNER No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2224
Permanent link to this record
 

 
Author Bojar, W.; Knopik, L.; Żarski, J.
Title Integrated assessment of business crop productivity and profitability for use in food supply forecasting Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Climate change suggests long periods without rainfall will occur in the future quite often. Previous approach on dependence crop-yields from size of rain confirms the existence of a statistically significant relation. We built a model describing the amount of precipitation and taking into account periods of drought, using a mixture of gamma distribution and one point-distribution. Parameter estimators were constructed from rainfall data using the method of maximum likelihood. Long series of days or decades of drought allow to determine the probabilities of adverse developments in agriculture as the basis for forecasting crop yields in the future (years 2030, 2050). Forecasted yields can be used for assessment of productivity and profitability of some selected crops in Kujavian-Pomeranian region. Assumptions and parameters of large-scale spatial economic models will be applied to build up relevant solutions. Calculated with this approach output could be useful to expect decrease in agricultural output in the region. It will enable to shape effective agricultural policy to know how to balance food supply and demand through appropriate managing with stored food raw material and/or import/export policies. Used precipitation-yields dependencies method let verify earlier used methodology through comparison of obtained solutions concerning forecasted yields and closed to it uncertainty analysis.This work was co-financed by NCBiR, Contract no. FACCE JPI/04/2012 – P100 PARTNER
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5090
Permanent link to this record