toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Park, S.K.; Sungmin, O.; Cassardo, C. doi  openurl
  Title Soil temperature response in Korea to a changing climate using a land surface model Type Journal Article
  Year 2017 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal Asia-Pacific Journal of Atmospheric Sciences  
  Volume 53 Issue 4 Pages 457-470  
  Keywords Land surface process; soil temperature; climate change; soil-vegetation-atmosphere transfer (SVAT) scheme; University of TOrino model of land Process Interaction with Atmosphere (UTOPIA); REGIONAL CLIMATE; SNOW COVER; WATER-RESOURCES; SOCIOECONOMIC SCENARIOS; QUANTITATIVE-ANALYSIS; MESOSCALE MODEL; SRES EMISSIONS; FUTURE CLIMATE; CHANGE IMPACTS; SOUTH-AMERICA  
  Abstract (up) The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.  
  Address 2017-12-21  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1976-7633 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5182  
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C. url  doi
openurl 
  Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 6 Pages 064029  
  Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios  
  Abstract (up) The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4627  
Permanent link to this record
 

 
Author Cassardo, C.; Andreoli, V. doi  openurl
  Title On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy Type Journal Article
  Year 2019 Publication Applied Sciences-Basel Abbreviated Journal Applied Sciences-Basel  
  Volume 9 Issue 18 Pages 3880  
  Keywords land-surface; UTOPIA; NOAH; GLDAS; micrometeorology; exchanges; processes; vineyards; cabernet-sauvignon; climate-change; wine color; temperature; parameterization; simulations; circulation; balances; moisture; sunlight  
  Abstract (up) The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5228  
Permanent link to this record
 

 
Author Lehtonen, H.; Palosuo, T.; Korhonen, P.; Liu, X. url  doi
openurl 
  Title Higher Crop Yield Levels in the North Savo Region—Means and Challenges Indicated by Farmers and Their Close Stakeholders Type Journal Article
  Year 2018 Publication Agriculture Abbreviated Journal Agriculture  
  Volume 8 Issue 7 Pages 93  
  Keywords northern Europe; forage grasslands; spring cereals; drainage; soil conidtions; farm management; agricultural policy  
  Abstract (up) The sustainable intensification of farming systems is expected to increase food supply and reduce the negative environmental effects of agriculture. It is also seen as an effective adaptation and mitigation strategy in response to climate change. Our aim is to determine farmers’ and other stakeholders’ views on how higher crop yields can be achieved from their currently low levels. This was investigated in two stakeholder workshops arranged in North Savo, Finland, in 2014 and 2016. The workshop participants, who were organized in discussion groups, considered some agricultural policies to discourage the improvement of crop yields. Policy schemes were seen to support extensification and reduce the motivation for yield improvements. However, the most important means for higher crop yields indicated by workshop participants were improved soil conditions with drainage and liming, in addition to improved crop rotations, better sowing techniques, careful selection of cultivars and forage grass mixtures. Suggested solutions for improving both crop yields and farm income also included optimized use of inputs, focusing production at the most productive fields and actively developed farming skills and knowledge sharing. These latter aspects were more pronounced in 2016, suggesting that farmers’ skills are increasingly being perceived as important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2077-0472 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5203  
Permanent link to this record
 

 
Author Cantelaube, P.; Jayet, P. doi  openurl
  Title Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level Type Journal Article
  Year 2012 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 29 Issue Pages 35-44  
  Keywords Downscaling; Land use; Spatial statistics; Farm-groups; Farm Accountancy Data Network; FADN  
  Abstract (up) There is a strong need for accurate and spatially referenced information regarding policy making and model linkage. This need has been expressed by land users, and policy and decision makers in order to estimate both spatially and locally the impacts of European policy (like the Common Agricultural Policy) and/or global changes on farm-groups. These entities are defined according to variables such as altitude, economic size and type of farming (referring to land uses). European farm-groups are provided through the Farm Accountancy Data Network (FADN) as statistical information delivered at regional level. The aim of the study is to map locally farm-group probabilities within each region. The mapping of the farm-groups is done in two steps: (1) by mapping locally the co-variables associated to the farm-groups, i.e. altitude and land uses; (2) by using regional FADN data as a priori knowledge for transforming land uses and altitude information into farm-groups location probabilities within each region. The downscaling process focuses on the land use mapping since land use data are originally point information located every 18 km. Interpolation of land use data is done at 100 m by using co-variables like land cover, altitude, climate and soil data which are continuous layers usually provided at fine resolution. Once the farm-groups are mapped, European Policy and global changes scenarios are run through an agro-economic model for assessing environmental impacts locally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4582  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: