|   | 
Details
   web
Records
Author Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; Eisner, S.; Fekete, B.M.; Folberth, C.; Foster, I.; Gosling, S.N.; Haddeland, I.; Khabarov, N.; Ludwig, F.; Masaki, Y.; Olin, S.; Rosenzweig, C.; Ruane, A.C.; Satoh, Y.; Schmid, E.; Stacke, T.; Tang, Q.; Wisser, D.
Title Constraints and potentials of future irrigation water availability on agricultural production under climate change Type Journal Article
Year 2013 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3239-3244
Keywords Agricultural Irrigation/economics/*methods; Agriculture/economics/*methods; Carbon Dioxide/analysis; *Climate Change; Computer Simulation; Forecasting; *Models, Theoretical; Water Supply/*statistics & numerical data; adaptation; agriculture; hydrology; uncertainty
Abstract (up) We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 1091-6490 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4790
Permanent link to this record
 

 
Author Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J.
Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
Year 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.
Volume 8 Issue 2 Pages 261-277
Keywords land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth
Abstract (up) We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991-9603 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4559
Permanent link to this record
 

 
Author Refsgaard, J.C.; Arnbjerg-Nielsen, K.; Drews, M.; Halsnaes, K.; Jeppesen, E.; Madsen, H.; Markandya, A.; Olesen, J.E.; Porter, J.R.; Christensen, J.H.
Title The role of uncertainty in climate change adaptation strategies – a Danish water management example Type Journal Article
Year 2013 Publication Mitigation and Adaptation Strategies for Global Change Abbreviated Journal Mitig. Adapt. Strateg. Glob. Change
Volume 18 Issue 3 Pages 337-359
Keywords Climate change; Adaptation; Uncertainty; Risk; Water sectors; Multi-disciplinary; change impacts; global change; winter-wheat; models; scenarios; ensembles; denmark; vulnerability; community; knowledge
Abstract (up) We propose a generic framework to characterize climate change adaptation uncertainty according to three dimensions: level, source and nature. Our framework is different, and in this respect more comprehensive, than the present UN Intergovernmental Panel on Climate Change (IPCC) approach and could be used to address concerns that the IPCC approach is oversimplified. We have studied the role of uncertainty in climate change adaptation planning using examples from four Danish water related sectors. The dominating sources of uncertainty differ greatly among issues; most uncertainties on impacts are epistemic (reducible) by nature but uncertainties on adaptation measures are complex, with ambiguity often being added to impact uncertainties. Strategies to deal with uncertainty in climate change adaptation should reflect the nature of the uncertainty sources and how they interact with risk level and decision making: (i) epistemic uncertainties can be reduced by gaining more knowledge; (ii) uncertainties related to ambiguity can be reduced by dialogue and knowledge sharing between the different stakeholders; and (iii) aleatory uncertainty is, by its nature, non-reducible. The uncertainty cascade includes many sources and their propagation through technical and socio-economic models may add substantially to prediction uncertainties, but they may also cancel each other. Thus, even large uncertainties may have small consequences for decision making, because multiple sources of information provide sufficient knowledge to justify action in climate change adaptation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1381-2386 1573-1596 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4613
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Asseng, S.; Bindi, M.; Biernath, C.; Constantin, J.; Coucheney, E.; Dechow, R.; Doro, L.; Eckersten, H.; Gaiser, T.; Grosz, B.; Heinlein, F.; Kassie, B.T.; Kersebaum, K.-C.; Klein, C.; Kuhnert, M.; Lewan, E.; Moriondo, M.; Nendel, C.; Priesack, E.; Raynal, H.; Roggero, P.P.; Rötter, R.P.; Siebert, S.; Specka, X.; Tao, F.; Teixeira, E.; Trombi, G.; Wallach, D.; Weihermüller, L.; Yeluripati, J.; Ewert, F.
Title Impact of spatial soil and climate input data aggregation on regional yield simulations Type Journal Article
Year 2016 Publication PLoS One Abbreviated Journal PLoS One
Volume 11 Issue 4 Pages e0151782
Keywords systems simulation; nitrogen dynamics; winter-wheat; crop models; data resolution; scale; water; variability; calibration; weather
Abstract (up) We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4725
Permanent link to this record
 

 
Author Webber, H.; Gaiser, T.; Oomen, R.; Teixeira, E.; Zhao, G.; Wallach, D.; Zimmermann, A.; Ewert, F.
Title Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume Issue Pages
Keywords crop model; impact assessment; crop water use; evapotranspiration; irrigation; drought; uncertainty
Abstract (up) While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.
Address 2016-09-13
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Newsletter July Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area CropM Expedition Conference
Notes CropM; wos; ft=macsur; Approved no
Call Number MA @ admin @ Serial 4778
Permanent link to this record