toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 65 Issue Pages 10-17  
  Keywords climatic variability; stochastically generated weather; lars-wg; crop model; stics; nitrogen management; yield skewness; wheat yield; generic model; stics; management; variability; simulation; field; balances; impact  
  Abstract (down) Within the context of nitrogen (N) management, since 1950, with the rapid intensification of agriculture, farmers have often applied much larger fertiliser quantities than what was required to reach the yield potential. However, to prevent pollution of surface and groundwater induced by nitrates, The European Community launched The European Nitrates Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), with the aim of maintaining productivity and revenue for the country’s farmers, while reducing the environmental impact of excessive N application. A feasible approach for addressing climatic uncertainty lies in the use of crop models such as the one commonly known as STICS (simulateur multidisciplinaire pour les cultures standard). These models allow the impact on crops of the interaction between cropping systems and climatic records to be assessed. Comprehensive historical climatic records are rare, however, and therefore the yield distribution values obtained using such an approach can be discontinuous. In order to obtain better and more detailed yield distribution information, the use of a high number of stochastically generated climate time series was proposed, relying on the LARS-Weather Generator. The study focused on the interactions between varying N practices and climatic conditions. Historically and currently, Belgian farmers apply 180 kg N ha(-1), split into three equal fractions applied at the tillering, stem elongation and flag-leaf stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar practices where only the N rates applied at the flag-leaf stage were modified. Three types of farmer decision-making were analysed. The first related to the choice of N strategy for maximising yield, the second to obtaining the highest net revenue, and the third to reduce the environmental impact of potential N leaching, which carries the likelihood of taxation if inappropriate N rates are applied. The results showed reduced discontinuity in the yield distribution values thus obtained. In general, the modulation of N levels to accord with current farmer practices showed considerable asymmetry. In other words, these practices maximised the probability of achieving yields that were at least superior to the mean of the distribution values, thus reducing risk for the farmers. The practice based on applying the highest amounts (60-60-100 kg N ha(-1)) produced the best yield distribution results. When simple economical criteria were computed, the 60-60-80 kg N ha(-1) protocol was found to be optimal for 80-90% of the time. There were no statistical differences, however, between this practice and Belgian farmers’ current practice. When the taxation linked to a high level of potentially leachable N remaining in the soil after harvest was considered, this methodology clearly showed that, in 3 years out of 4,30 kg N ha(-1) could systematically be saved in comparison with the usual practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4646  
Permanent link to this record
 

 
Author Wallach, D.; Nissanka, S.P.; Karunaratne, A.S.; Weerakoon, W.M.W.; Thorburn, P.J.; Boote, K.J.; Jones, J.W. url  doi
openurl 
  Title Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume Issue Pages  
  Keywords Uncertainty; Phenology; Parameter uncertainty; Multi-model ensemble; Generalized least squares; Rice; Crop model; APSIM; DSSAT  
  Abstract (down) We consider predictions of the impact of climate warming on rice development times in Sri Lanka. The major emphasis is on the uncertainty of the predictions, and in particular on the estimation of mean squared error of prediction. Three contributions to mean squared error are considered. The first is parameter uncertainty that results from model calibration. To take proper account of the complex data structure, generalized least squares is used to estimate the parameters and the variance-covariance matrix of the parameter estimators. The second contribution is model structure uncertainty, which we estimate using two different models. An ANOVA analysis is used to separate the contributions of parameter and model uncertainty to mean squared error. The third contribution is model error, which is estimated using hindcasts. Mean squared error of prediction of time from emergence to maturity, for baseline +2 °C, is estimated as 108 days2, with model error contributing 86 days2, followed by model structure uncertainty which contributes 15 days2 and parameter uncertainty which contributes 7 days2. We also show how prediction uncertainty is reduced if prediction concerns development time averaged over years, or the difference in development time between baseline and warmer temperatures.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropM; wos; ftnotmacsur; wsnotyet; Approved no  
  Call Number MA @ admin @ Serial 4777  
Permanent link to this record
 

 
Author Roggero, P.P. url  doi
openurl 
  Title IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 136-137  
  Keywords long-term experiment; Italy  
  Abstract (down) This special issue includes a sub-set of papers developed in the context of the three-years (2013-16) research project “IC-FAR – Linking long term observatories with crop system modelling for a better understanding of climate change impact and adaptation strategies for Italian cropping systems” (www.icfar.it), funded by the Italian Ministry of Education, University and Research. IC-FAR collects the legacy of some three-four generations of researchers, members of the Italian Society of Agronomy, that from the 1960ies onward established long term agro-ecosystem experiments (LTAE) in various Italian locations, to address a wide range of agronomy research questions. A lot of the results from these LTAE were not yet published or were published as grey literature or in Italian and almost always as a single-site, single-experiment outcome.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4682  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F. url  doi
openurl 
  Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 78 Issue Pages 60-72  
  Keywords Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests  
  Abstract (down) The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4772  
Permanent link to this record
 

 
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. url  doi
openurl 
  Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 62 Issue Pages 55-64  
  Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil  
  Abstract (down) The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4562  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: