toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Persson, T.; Kværnø, S.; Höglind, M. url  openurl
  Title Determining the impact of soil regionalization and climate change on wheat and timothy grass yield in southeastern Norway Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Southeastern Norway is characterized by variable soils, which affect its agricultural productivity. The region is dominated by cereal production, but livestock farming with forage crops has increased the latest years. Climate and socio-economic changes could entail a shift from the current production areas of cereal and forage crops. In this study we used the mechanistic models CSM-CERES and LINGRA to evaluate impacts of climate change and soil variability on wheat and timothy yields in Akerhus and Østfold Counties in Southeastern Norway. The models were run for historical (1961-90) and projected future (2046-2065) climatic conditions, and for four soil regionalizations of different resolution (1, 5, 16 and 76 representative soil profiles). The extrapolation of soil characteristics was based on similarities in texture, organic matter, layering and water holding capacity. Across the whole region, there were small differences in both spring wheat and timothy yield between the different soil regionalization resolutions. However, within certain districts within the region the differences in wheat grain yield and timothy biomass yield among the soil resolutions were up to 20 percent. These results indicate that a relatively detailed resolution of the soil proporties is preferred to better understand the impact of shifts in production between cereals and forage grasses on yield level  if spatial variability within regions is considered. The climate change scenario used indicated increased yields of both crop types in a future climate. Further steps could include a weighting of the wheat and timothy production across soils according to economic analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5072  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S. url  doi
openurl 
  Title Impact of projected mid-21st century climate and soil extrapolation on simulated spring wheat grain yield in Southeastern Norway Type Journal Article
  Year 2017 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 155 Issue 03 Pages 361-377  
  Keywords  
  Abstract (up) The effects of soil variability on regional crop yield under projected climate change are largely unknown. In Southeastern Norway, increased temperature and precipitation are projected for the mid-21st century. Crop simulation models in combination with scaling techniques can be used to determine the regional pattern of crop yield. In the present paper, the CSM-CROPSIM-CERES-Wheat model was applied to simulate regional spring wheat yield for Akershus and Østfold counties in Southeastern Norway. Prior to the simulations, parameters in the CSM-CROPSIM-CERES-Wheat model were calibrated for the spring wheat cvars Zebra, Demonstrant and Bjarne, using cultivar trial data from Southeastern Norway and site-specific weather and soil information. Weather input data for regional yield simulations represented the climate in 1961–1990 and projections of the climate in 2046–2065. The latter were based on four Global Climate Models and greenhouse gas emission scenario A1B in the IPCC 4th Assessment Report. Data on regional soil particle size distribution, water-holding characteristics and organic matter data were obtained from a database. To determine the simulated grain yield sensitivity to soil input, the number of soil profiles used to describe the soilscape in the region varied from 76 to 16, 5 and 1. The soils in the different descriptions were selected by arranging them into groups according to similarities in physical characteristics and taking the soil in each group occupying the largest area in the region to represent other soils in that group. The simulated grain yields were higher under all four projected future climate scenarios than the corresponding average yields in the baseline conditions. On average across the region, there were mostly non-significant differences in grain yield between the soil extrapolations for all cultivars and climate projections. However, for sub-regions grain yield varied by up to 20% between soil extrapolations. These results indicate how projected climate change could affect spring wheat yield given the assumed simulated conditions for a region with similar climate and soil conditions to many other cereal production regions in Northern Europe. The results also provide useful information about how soil input data could be handled in regional crop yield determinations under these conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5009  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: