|   | 
Details
   web
Records
Author Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A.
Title Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Type Journal Article
Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment
Volume 466-467 Issue Pages 164-174
Keywords Agriculture/*methods; Air Pollutants/*metabolism; Brassica napus/growth & development/metabolism; Crops, Agricultural/growth & development/*metabolism; Gases/metabolism; Greenhouse Effect; Hordeum/growth & development/metabolism; Manure/*analysis; Nitrogen/metabolism; Nitrogen Dioxide/metabolism; Spain; Vicia/growth & development/metabolism; Zea mays/growth & development; Cover crops; GHG emissions; Green manure; Irrigation; Maize
Abstract (down) This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N(2)O, CO(2) and CH(4) in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N(2)O and CO(2) losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N(2)O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N(2)O compared with -Ba and -Rp. The direct emissions of N(2)O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO(3)(-) pool due to highly denitrifying conditions and increased drainage. The fluxes of CO(2) were in the range of other fertilized crops (i.e., 1118.71-1736.52 kg CO(2)-Cha(-1)). The incorporation of CC residues enhanced soil respiration in the range of 21-28% for barley and rape although no significant differences between treatments were detected. Negative CH(4) fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of -0.12 and -0.10 kg CH(4)-Cha(-1) for plots with and without incorporated CCs, respectively).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4639
Permanent link to this record
 

 
Author Ruiu, L.M.; Maurizi, S.; Sassu, S.; Seddaiu, G.; Zuin, O.; Blackmore, C.; Roggero, P.P.
Title Re-Staging La Rasgioni: lessons learned from transforming a traditional form of conflict resolution to engage stakeholders in agricultural water governance Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 4 Pages 297
Keywords co-researching; dairy farming; ecosystem perception; systemic governance; governance learning; irrigation; knowledge co-production; nitrate pollution; social learning; stakeholders; theatre
Abstract (down) This paper presents an informal process inspired by a public practice of conflict mediation used until a few decades ago in Gallura (NE Sardinia, Italy), named La Rasgioni (The Reason). The aim is twofold: (i) to introduce an innovative method that translates the complexity of water-related conflicts into a “dialogical tool”, aimed at enhancing social learning by adopting theatrical techniques; and (ii) to report the outcomes that emerged from the application of this method in Arborea, the main dairy cattle district and the only nitrate-vulnerable zone in Sardinia, to mediate contrasting positions between local entrepreneurs and representatives of the relevant institutions. We discuss our results in the light of four pillars, adopted as research lenses in the International research Project CADWAGO (Climate Change Adaptation and Water Governance), which consider the specific “social–ecological” components of the Arborea system, climate change adaptability in water governance institutions and organizations, systemic governance (relational) practices, and governance learning. The combination of the four CADWAGO pillars and La Rasgioni created an innovative dialogical space that enabled stakeholders and researchers to collectively identify barriers and opportunities for effective governance practices. Potential wider implications and applications of La Rasgioni process are also discussed in the paper.
Address 2017-04-24
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved yes
Call Number MA @ admin @ Serial 4944
Permanent link to this record
 

 
Author Cortignani, R.; Dono, G.
Title Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy Type Journal Article
Year 2018 Publication Environmental Science and Policy Abbreviated Journal Environ. Sci. Pol.
Volume 81 Issue Pages 26-35
Keywords Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems
Abstract (down) The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration.
Address 2018-03-02
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5193
Permanent link to this record
 

 
Author De Pascale, S.; Orsini, F.; Caputo, R.; Palermo, M.A.; Barbieri, G.; Maggio, A.
Title Seasonal and multiannual effects of salinisation on tomato yield and fruit quality Type Journal Article
Year 2012 Publication Functional Plant Biology Abbreviated Journal Functional Plant Biology
Volume 39 Issue 8 Pages 689-698
Keywords fruit ions concentration; fruit lipophilic and hydrophilic antioxidant; capacities; leaf water potentials; leaf stomatal conductance; short- and; long-term salinisation; salinity tolerance; water-stress; antioxidant activity; irrigation; growth; plants; soils; carotenoids; responses; crops
Abstract (down) The effects of short-and long-term salinisation were studied by comparing tomato growth on a soil exposed to one-season salinisation (short term) vs growth on a soil exposed to >20 years salinisation (long term). Remarkable differences were associated to substantial modifications of the soil physical-chemical characteristics in the root zone, including deteriorated structure, reduced infiltration properties and increased pH. Fresh yield, fruit number and fruit weight were similarly affected by short-and long-term salinisation. In contrast, the marketable yield was significantly lower in the long-term salinised soil-a response that was also associated to nutritional imbalance (mainly referred to P and K). As reported for plants growing under oxygen deprivation stress, the antioxidant capacity of the water soluble fraction of salinised tomato fruits was enhanced by short-term salinisation, also. Overall, long-term salinisation may cause physiological imbalances and yield reductions that cannot be solely attributed to hyperosmotic stress and ionic toxicity. Therefore, the ability of plants to cope with nutritional deficiency and withstand high pH and anoxia may be important traits that should be considered to improve plant tolerance to long-term salinised soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1445-4408 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4583
Permanent link to this record
 

 
Author Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R.
Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 140 Issue Pages 1-10
Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil
Abstract (down) The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4685
Permanent link to this record