toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Holman, I. url  openurl
  Title Identifying where future landuse allocation in Europe is robust to climate and socio-economic uncertainty Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-23  
  Keywords  
  Abstract (down) The spatial distribution of future European landuse will be influenced by yield changes arising from climate change and changes in profitability as a consequence of socio-economic change (arising from changing food demand; prices; technology etc).  To understand how these factors affect future land use allocation, a modelling system has been set up to predict agricultural land use across the EU under any scenario set of climate and socio- and techno-economic data. Metamodels of crop and forest yields, and optimal cropping and profit are derived from the outputs of the IMPEL, GOTILWA+, SFARMODand WaterGAP models. Profitability of each possible land use is modelled across the EU, assuming that use will change to the most profitable in the timescale being considered (2050). Land use in a grid is then allocated based on profit, with minimum profit thresholds set for intensive agriculture (arable or grassland), extensive agriculture, managed forest and finally unmanaged forest or unmanaged land.  The European demand for food as a function of population, imports, food preferences and bioenergy, is a production constraint, as is irrigation water available.  The model iterates prices until demand is satisfied (or cannot be met) and basin water usage for irrigation is not more than is available.This presentation describes the application of the modelling system across future climate change uncertainty space (as given by 60 combinations of downscaled 10’x10’ gridded climate outputs from 5 Global Climate Models, 3 climate sensitivities and 4 emissions scenario) under both baseline and four future socio-economic scenarios to identify those areas of Europe in which the spatial allocation of agricultural landcovers are robust to this uncertainty. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2138  
Permanent link to this record
 

 
Author Bojar, W.; Żarski, J.; Knopik, L.; Kuśmierek-Tomaszewska, R.; Sikora, M.; Dzieża, G. url  openurl
  Title Markov chain as a model of daily total precipitation and a prediction of future natural events Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ft_macsur; MACSUR or FACCE acknowledged.  
  Abstract (down) The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Braunschweig (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Joint Workshops October 2015, 2015-10-27 to 2015-10-30, Braunschweig  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4236  
Permanent link to this record
 

 
Author Bojar, W.; Żarski, J.; Knopik, L.; Kuśmierek-Tomaszewska, R.; Sikora, M.; Dzieża, G. url  openurl
  Title Markov chain as a model of daily total precipitation and a prediction of future natural events Type Conference Article
  Year 2015 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ft_macsur; MACSUR or FACCE acknowledged.  
  Abstract (down) The size of arable crop yields depends on many weather factors, such as precipitation and air temperature during the vegetation period. When studying the relation between yields and precipitation, not only the total amount of precipitation, but also the occurrence of long periods without precipitation must be taken into account. The paper [Bojar et al., 2014] demonstrated that barley yield significantly statistically depends on the length of the series of days without precipitation. This paper attempts to analyse the statistical data on daily precipitation totals recorded during the January – December periods in the years 1971 – 2013 at the weather station of the University of Science and Technology in Bydgoszcz, Faculty of Agriculture and Biotechnology, in the Research Centre located in an agricultural area in the Mochle township, situated 17 kilometres from Bydgoszcz. The primary statistical operation in the study is an attempt to estimate the Markov chain order. To this end, two criteria of chain order determination are applied: BIC (Bayesian information criterion, Schwarz 1978) and AIC (Akaike information criterion, Akaike 1974). Both are based on the log-likelihood functions for transition probability of the Markov chain constructed on certain data series. Statistical analysis of precipitation totals data leads to the conclusion that both AIC and BIC indicate the 2nd order for the studied Markov chain. The proposed method of estimating the variability of precipitation occurrence in the future will be utilised to improve region-related bio-physical and economical models, and to assess the risk of extreme events in the context of growing climate hazards. It will serve as basis for a search in agriculture for solutions mitigating those hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Braunschweig (Germany) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Joint Workshops October 2015, 2015-10-27 to 2015-10-30, Braunschweig  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4395  
Permanent link to this record
 

 
Author Hoveid, Ø. url  openurl
  Title A prototype stochastic dynamic equilibrium model of the global food system Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-24  
  Keywords  
  Abstract (down) The risks of food consumption are primarily linked to those of food production due to stochastic weather. Other sources of risk are associated with break-down of food trade or transport for weather or political reasons. Hopefully, future cures against increased risk due to climate change may be found with new agricultural technologies, systems of storage from favorable to unfavorable periods, more flexible trade-arrangements between favorable and unfavorable places. However, in the short run one has to rely on the available technology, storage facilities and trade agreements. With a realistic model of the stochastic global food system, it should be possible to measure risks of certain extreme unfavorable events.A realistic case will have countries with different climate in different growing seasons. Markets will be open for trade at a number of points per year, in which decisions of production, storage, trade and consumption can be coordinated as a static equilibrium. Determinants of this equilibrium are the weather up to this date reflected in the state of crops, the available harvested stocks and the decision-maker’s preferences. With a global stochastic process of weather, a stochastic sequence of equilibria follows. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2139  
Permanent link to this record
 

 
Author Cortignani, R. url  openurl
  Title Common Agricultural Policy and climate variability changes: an impact assessment of the first-pillar reform on an agricultural area of Grana Padano in different climate scenarios Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-12  
  Keywords  
  Abstract (down) The reform of the Common Agricultural Policy it started in 2015 with several innovative aspects. Regarding the first pillar, such aspects are especially the convergence of the basic payments, the green payments and the coupled payments. In this regard seems interesting carry out analysis about to evaluate the policy impact considering the risks and opportunities due to climate change.In this study the impact of the convergence of basic payments, the introduction of the green payments and the coupled payments has been evaluated on dairy cattle farms in the Grana Padano area. The impact has been evaluated in different climate scenarios by economic, social and environmental indicators. The methodology used is the mathematical programming and especially a model of Discrete Stochastic Programming has been used to represents farms of the FADN database.The main results show that a significant part of the farms is affected by the diversification constraint that reduces the land devoted to corn silage. Farmers could cultivate corn silage after a principal crop (e.g. ryegrass) in order to avoid the diversification constraint, however, determining a negative impact on the use of environmental resources. To consider also that in the future there is an increase of corn silage yields with long cycle.Another result to underline is that which concerns the possibility of soybean cultivation in the ecological focus areas. In fact, considering the coupled payment provided for this crop, the ecological focus areas seem to be an important source of income for the farms.Finally, the analysis shows that the convergence of the basic payment will result in a reallocation of direct payments between farms with a significant impact on farm incomes. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: