toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M. url  doi
openurl 
  Title Cultivating resilience by empirically revealing response diversity Type Journal Article
  Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 25 Issue Pages 186-193  
  Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather  
  Abstract (down) Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4525  
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R. url  doi
openurl 
  Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 4 Pages  
  Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought  
  Abstract (down) Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4814  
Permanent link to this record
 

 
Author Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. url  doi
openurl 
  Title Heat stress in cereals: Mechanisms and modelling Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 64 Issue Pages 98-113  
  Keywords high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set  
  Abstract (down) Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4741  
Permanent link to this record
 

 
Author Ventrella, D.; Giglio, L.; Charfeddine, M.; Dalla Marta, A. openurl 
  Title Consumptive use of green and blue water for winter durum wheat cultivated in Southern Italy Type Journal Article
  Year 2015 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 20 Issue 1 Pages 33-44  
  Keywords irrigation; water productivity; model simulation; climate change; climate-change scenarios; air co2 enrichment; impact; footprint; irrigation; simulation; yield; agriculture; variability; resources  
  Abstract (down) In this study at the regional scale, the model DSSAT CERES-Wheat was applied in order to simulate the cultivation of winter durum wheat (WW) and to estimate the green water (GW) and the blue water (BW) through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years for three scenarios including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5 degrees C. The GW and BW contribution for evapo transpiration requirement is presented and analyzed on a distributed scale related to the Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. The GW component was dominant compared to BW, covering almost 90% of the ETc of WW Under a Baseline scenario the weight BW was 11%, slightly increased in the future scenarios. GW appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, and to the hydraulic characteristics of soil for each calculation unit. After considering the effects of climate change on irrigation requirement of WW we carried out an example of analysis in order to verify the economic benefit of supplemental irrigation for WW cultivation. The probability that irrigation generates a negative or zero income ranged between 55 and 60% and climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4653  
Permanent link to this record
 

 
Author Weindl, I.; Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Muller, C.; Dietrich, J.P.; Humpenoder, F.; Stevanovic, M.; Schaphoff, S.; Popp, A. doi  openurl
  Title Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices Type Journal Article
  Year 2017 Publication Global Environmental Change-Human and Policy Dimensions Abbreviated Journal Global Environmental Change-Human and Policy Dimensions  
  Volume 47 Issue Pages 121-132  
  Keywords Livestock; Productivity; Dietary changes; Consumptive water use; Water scarcity; Water resources; Climate-Change Mitigation; Greenhouse-Gas Emissions; Global Vegetation; Model; Land-Use; Comprehensive Assessment; Fresh-Water; Systems; Requirements; Irrigation; Carbon  
  Abstract (down) Human activities use more than half of accessible freshwater, above all for agriculture. Most approaches for reconciling water conservation with feeding a growing population focus on the cropping sector. However, livestock production is pivotal to agricultural resource use, due to its low resource-use efficiency upstream in the food supply chain. Using a global modelling approach, we quantify the current and future contribution of livestock production, under different demand-and supply-side scenarios, to the consumption of “green” precipitation water infiltrated into the soil and “blue” freshWater withdrawn from rivers, lakes and reservoirs. Currently, cropland feed production accounts for 38% of crop water consumption and grazing involves 29% of total agricultural water consumption (9990 km(3) yr(-1)). Our analysis shows that changes in diets and livestock productivity have substantial implications for future consumption of agricultural blue water (19-36% increase compared to current levels) and green water (26-69% increase), but they can, at best, slow down trends of rising water requirements for decades to come. However, moderate productivity reductions in highly intensive livestock systems are possible without aggravating water scarcity. Productivity gains in developing regions decrease total agricultural water consumption, but lead to expansion of irrigated agriculture, due to the shift from grassland/green water to cropland/blue water resources. While the magnitude of the livestock water footprint gives cause for concern, neither dietary choices nor changes in livestock productivity will solve the water challenge of future food supply, unless accompanied by dedicated water protection policies.  
  Address 2018-01-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: