|   | 
Details
   web
Records
Author Baranowski, P.; Jedryczka, M.; Mazurek, W.; Babula-Skowronska, D.; Siedliska, A.; Kaczmarek, J.
Title Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 3 Pages e0122913
Keywords Algorithms; Alternaria/*pathogenicity; Brassica napus/microbiology/*physiology
Abstract (down) In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4549
Permanent link to this record
 

 
Author Destain, M.-F.
Title Filtering methods for predicting and modelling wheat yield in the context of climate change Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) In this paper, an Improved Particle Filtering (IPF) based on minimizing Kullback-Leibler divergence will be proposed for biomass prediction of a wheat crop model in the context of climate change including heat and drought stresses.In a first stage, the performances of the proposed technique will be compared with those of the extended Kalman filter (EKF), unscented Kalman filter (UKF), Particle filter (PF). In a second stage, the state estimation techniques EKF, UKF, PF and IPF will be used for updating prediction of the model in order to predict winter wheat biomass, in specific field conditions, during several contrasted weather conditions. In a third stage, the effects of practical challenges on the performances of the state estimation algorithms will be assessed. Such practical challenges include the effect of measurement noise on the estimation performances and the measurement frequency of state variables.The first results show that the UKF provides a higher accuracy than the EKF due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated states through lineralization of the nonlinear process model. The results also show that the IPF provides a significant improvement over PF because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of the sampling distribution, which also accounts for the observed data. For all techniques, the practical challenges affect the estimation accuracy as well as the convergence of the estimated states and parameters. However, the IPF can still provide both convergence as well as accuracy over other estimation methods. These advantages are precious in presence of high climate stresses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5083
Permanent link to this record
 

 
Author Kjeldsen, C.
Title An approach to sustainability management within partnerships between heterogeneous actors – example from a Danish water catchment, dominated by dairy farms Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-29
Keywords
Abstract (down) In this paper we present an approach to sustainability management within partnerships between heterogenous actors. This multi-disciplinary approach is also relevant for the assessment of climate change adaptation and mitigation in the context of www.macsur.eu; and especially in areas with dairy farming hot-spots. Established approaches within this field such as Adaptive Co-Management and Social Learning focus on social-material interactions, feedback mechanisms, knowledge integration and institutional change as drivers in sustainable development. However, the role of micro-scale power dynamics as part of these processes have received less attention. In a case study of land-water management in a Danish water catchment, dominated by dairy farms, we analyze how dynamics of power within knowledge integration processes interacts with institutions at different scales. Thereby, we show ways in which power-knowledge dynamics shape development outcomes. Finally, we propose how increasing reflexivity of power-knowledge dynamics might contribute to institutional change and sustainable development. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2144
Permanent link to this record
 

 
Author Popp, A.; Rose, S.K.; Calvin, K.; Van Vuuren, D.P.; Dietrich, J.P.; Wise, M.; Stehfest, E.; Humpenöder, F.; Kyle, P.; Van Vliet, J.; Bauer, N.; Lotze-Campen, H.; Klein, D.; Kriegler, E.
Title Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 123 Issue 3-4 Pages 495-509
Keywords bio-energy; miscanthus; emissions; crop
Abstract (down) In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10-18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24-36 % of total cropland by 2100.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4499
Permanent link to this record
 

 
Author Legarrea, S.; Velázquez, E.; Aguado, P.; Fereres, A.; Morales, I.; Rodríguez, D.; Del Estal, P.; Viñuela, E.
Title Effects of a photoselective greenhouse cover on the performance and host finding ability of Aphidius ervi in a lettuce crop Type Journal Article
Year 2014 Publication BioControl Abbreviated Journal BioControl
Volume 59 Issue 3 Pages 265-278
Keywords aphidius ervi; macrosiphum euphorbiae; uv-absorbing net; parasitoid; sadie; spatial distribution; integrated pest-management; natural enemies; plastic films; mosaic-virus; insect pests; count data; pea aphid; uv; parasitoids; hymenoptera
Abstract (down) In the search for a durable pest control management, biological control agents and photoselective covers are suitable candidates to be implemented in greenhouse crops. In this work, we studied the effects of a 50 mesh photoselective cover compared to a standard with similar characteristics but without UV-absorbing additives on the performance of Aphidius ervi Haliday (Hymenoptera: Braconidae), a widely used parasitoid to control aphids in vegetable crops. Four field experiments were conducted in La Poveda Experimental Farm (Central Spain) where a lettuce crop was grown during the years 2008-2010. Lettuce plants were infested by Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and the parasitoid A. ervi was released and monitored throughout the crop cycle to evaluate any constraint in its performance produced by UV-absorbing nets. The ability of A. ervi to find and parasitize the host was not modified by the photoselective cover during the four seasons studied. Thus, we suggest that both strategies could be combined in the context of IPM in vegetable crops where this natural enemy is released.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-6141, 1573-8248 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4509
Permanent link to this record