|   | 
Details
   web
Records
Author Kim, Y.; Berger, S.; Kettering, J.; Tenhunen, J.; Haas, E.; Kiese, R.
Title Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with LandscapeDNDC Type Journal Article
Year 2014 Publication Ecological Research Abbreviated Journal Ecol. Res.
Volume 29 Issue 3 Pages 441-454
Keywords biogeochemical modeling; landscapedndc; N2O; nitrate leaching; plastic mulch; nitrous-oxide emissions; semiarid loess plateau; biogeochemical model; soil-erosion; no emissions; forest soils; dndc model; film mulch; china; field
Abstract (down) Radish is one of the major dry field crops in Asia commonly grown with plastic mulch and high rates of N fertilization, and potentially harming the environment due to N2O emissions and nitrate leaching. Despite the widespread use of plastic mulch, biogeochemical models so far do not yet consider impacts of mulch on soil environmental conditions and biogeochemistry. In this study, we adapted and successfully tested the LandscapeDNDC model against field data by simulating crop growth, C and N turnover and associated N2O emissions as well as nitrate leaching for radish cultivation with plastic mulch and in conjunction with different rates of N fertilization (465-765 kg N ha(-1) year(-1)). Due to the sandy soil texture and monsoon climate, nitrate leaching with rates up to 350 kg N ha(-1) year(-1) was the dominant reason for overall low nitrogen use efficiency (32-43 %). Direct or indirect N2O emissions (calculated from simulated nitrate leaching rates and IPCC EFind = 0.0075) ranged between 2 and 3 kg N ha(-1) year(-1), thus contributing an equal amount to total field emissions of about 5 kg N ha(-1) year(-1). Based on our results, emission factors for direct N2O emissions ranged between 0.004 and 0.005. These values are only half of the IPCC default value (0.01), demonstrating the need of biogeochemical models for developing site and/or region specific EFs. Simulation results also revealed that changes in agricultural management by applying the fertilizer only to the rows would be an efficient mitigation strategy, effectively decreasing field nitrate leaching and N2O emissions by 50-60 %.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0912-3814 1440-1703 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4528
Permanent link to this record
 

 
Author Zheng, B.; Chapman, S.C.; Christopher, J.T.; Frederiks, T.M.; Chenu, K.
Title Frost trends and their estimated impact on yield in the Australian wheatbelt Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3611-3623
Keywords Adaptation, Physiological/genetics; Australia; Computer Simulation; Ecotype; *Freezing; Genotype; Geography; Seasons; Triticum/genetics/*growth & development/physiology; Breeding; climate change; crop adaptation; crop modelling; ideotype; post-head-emergence frost; reproductive frost; spring radiant frost
Abstract (down) Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4580
Permanent link to this record
 

 
Author Frederiks, T.M.; Christopher, J.T.; Sutherland, M.W.; Borrell, A.K.
Title Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance Type Journal Article
Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3487-3498
Keywords Adaptation, Physiological; Environment; *Freezing; Hordeum/*physiology; Stress, Physiological; Triticum/*physiology; Barley; frost; reproductive frost; spring radiant frost; wheat
Abstract (down) Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4558
Permanent link to this record
 

 
Author Abdelrahman, H.M.; Olk, D.C.; Dinnes, D.; Ventrella, D.; Miano, T.; Cocozza, C.
Title Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions Type Journal Article
Year 2016 Publication Journal of Soils and Sediments Abbreviated Journal Journal of Soils and Sediments
Volume 16 Issue 10 Pages 2375-2384
Keywords Light fraction; Mobile humic acid; Organic farming; Particulate organic matter; SOM sequential extraction
Abstract (down) Purpose The study aimed to describe the carbohydrates and amino compounds content in soil, the light fraction (LF), the >53 μm particulate organic matter (POM), and the mobile humic acid (MHA) fraction and to find out whether the carbohydrates and amino compounds can be used to explain the origin of SOM fractions. Materials and methods Soil samples were collected from two agricultural fields managed under organic farming in southern Italy. The LF, the POM, and the MHA were sequentially extracted from each soil sample then characterized. Seven neutral sugars and 19 amino compounds (amino acids and amino sugars) were determined in each soil sample and its correspondent fractions. Results and discussion The MHA contained less carbohydrate than the LF or the POM but its carbohydrates, although dominated by arabinose, were relatively with larger microbial contribution as revealed by the mannose/xylose ratio. The amino compounds were generally less in the LF or the POM than in the MHA, while the fungal (aspartic and serine) and bacterial (alanine and glycine) amino acids were larger in the MHA than in the LF or the POM, underlining the microbial contribution to the MHA. Results from both sites indicated that total carbohydrates content decreased moving from the LF (younger fraction) to the MHA (older fraction), which seems to follow a decomposition continuum of organic matter in the soil-plant system. Conclusions The study showed that the MHA is a labile humified fraction of soil C due to its content of carbohydrates and concluded that the content of carbohydrates and amino compounds in the LF, the POM and the MHA can depict the nature of these fractions and their cycling pattern and response to land management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-0108 ISBN Medium
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4992
Permanent link to this record
 

 
Author Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; van der Zanden, E.H.; Lavalle, C.; e Silva, F.B.; Walz, A.; Bodirsky, B.
Title A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways Type Journal Article
Year 2018 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume 18 Issue 3 Pages 751-762
Keywords Land use change; Integrated modelling; Cross-scale interaction; Nature protection; Impact assessment
Abstract (down) Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area TradeM Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5004
Permanent link to this record