|   | 
Details
   web
Records
Author Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K.
Title Improving the use of crop models for risk assessment and climate change adaptation Type Journal Article
Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.
Volume 159 Issue Pages 296-306
Keywords Crop model; Risk assessment; Climate change impacts; Adaptation; Climate models; Uncertainty
Abstract (down) Highlights

• 14 criteria for use of crop models in assessments of impacts, adaptation and risk • Working with stakeholders to identify timing of risks is key to risk assessments. • Multiple methods needed to critically assess the use of climate model output • Increasing transparency and inter-comparability needed in risk assessments

Abstract

Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language phase 2+ Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium
Area CropM Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5175
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S.
Title Projections of climate change impacts on crop production: A global and a Nordic perspective Type Journal Article
Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science
Volume 62 Issue 4 Pages 166-180
Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale
Abstract (down) Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-4702 1651-1972 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4802
Permanent link to this record
 

 
Author Rötter, R.P.; Höhn, J.G.; Fronzek, S.
Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science
Volume 62 Issue Pages 166-180
Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale
Abstract (down) Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-4702, 1651-1972 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4591
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y.
Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 214-215 Issue Pages 483-493
Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts
Abstract (down) Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4714
Permanent link to this record
 

 
Author Korhonen, P.; Palosuo, T.; Persson, T.; Höglind, M.; Jego, G.; Van Oijen, M.; Gustavsson, A.-M.; Belanger, G.; Virkajärvi, P.
Title Modelling grass yields in northern climates – a comparison of three growth models for timothy Type Journal Article
Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 224 Issue Pages 37-47
Keywords Forage grass; Model comparison; Timothy; Uncertainty; Yield; Nutritive-Value; Catimo Model; Nitrogen Balances; Simulation; Regrowth; Wheat; Stics; Dynamics; Harvest; Water
Abstract (down) During the past few years, several studies have compared the performance of crop simulation models to assess the uncertainties in model-based climate change impact assessments and other modelling studies. Many of these studies have concentrated on cereal crops, while fewer model comparisons have been conducted for grasses. We compared the predictions for timothy grass (Phleum pratertse L.) yields for first and second cuts along with the dynamics of above-ground biomass for the grass simulation models BASGRA and CATIMO, and the soil -crop model STICS. The models were calibrated and evaluated using field data from seven sites across Northern Europe and Canada with different climates, soil conditions and management practices. Altogether the models were compared using data on timothy grass from 33 combinations of sites, cultivars and management regimes. Model performances with two calibration approaches, cultivar-specific and generic calibrations, were compared. All the models studied estimated the dynamics of above-ground biomass and the leaf area index satisfactorily, but tended to underestimate the first cut yield. Cultivar-specific calibration resulted in more accurate first cut yield predictions than the generic calibration achieving root mean square errors approximately one third lower for the cultivar-specific calibration. For the second cut, the difference between the calibration methods was small. The results indicate that detailed soil process descriptions improved the overall model performance and the model responses to management, such as nitrogen applications. The results also suggest that taking the genetic variability into account between cultivars of timothy grass also improves the yield estimates. Calibrations using both spring and summer growth data simultaneously revealed that processes determining the growth in these two periods require further attention in model development.
Address 2018-07-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5206
Permanent link to this record